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Preface

Many materials have complex properties intermediate between those of crystals and

fluids. Among these are liquid crystals, with their well-established orientational

order, polymers, foams and gels. Collectively these have come to be called soft

matter.

Within the last few years, the physics of soft condensed matter has become a rapidly

expanding branch of science. This is mainly due to the recognition that apparently

disparate phenomena may be described by unified concepts. In fact, these materials

generally consist of organic molecules that interact weakly; as a result, molecular

order is easily perturbed and quite modest fields or boundary effects are sufficient

to cause a quite massive reorganisation and to influence strongly their structure and

macroscopic properties.

What distinguishes this area of study from other branches of contemporary physics,

is that soft matter comprises almost all materials of our everyday life: consumer

goods like toothpaste, shaving-foam, cleaning agents or mayonnaise, but also rub-

ber, plastic, displays and cloth. Despite of its being close to our personal experience,

the resulting phenomena present challenges to fundamental science and to mathe-

matics itself. It will be sufficient to mention some major disciplines that are involved

in establishing the theoretical basis of such materials: Continuum Mechanics, Sta-

tistical Mechanics, the Theory of Phase Transitions but also Mathematical Analysis,

Calculus of Variations and Algebraic Topology, to name but a few.

For both historical, theoretical and technological reasons, liquid crystals play an im-

portant role in this picture. A nematic liquid crystal is a system of rod-like molecules

whose centers of mass do not exhibit any positional order. The interaction between

nearby molecules tries to line them up along a common direction and induces a par-

tial ordering at mesoscopic scales. This effect competes against distortions induced

by external mechanical actions, electric or magnetic fields, and disordering thermal

effects. The average alignment of the molecules is represented by a unit vector, usu-

ally denoted by n and called the director.

This thesis is organized as follows. Chapter 1 gives a brief introduction to nematic

liquid crystals. It is meant to provide a neat summary of the mathematical and phys-

ical tools that will be used in the remaining Chapters. The equilibrium configuration

of a nematic liquid crystal bounded by a rough surface [19] is studied in Chapter 2.

vii
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The surface wrinkling induces a partial melting in the degree of orientation. This

softened region penetrates the bulk up to a length scale which turns out to coincide

with the characteristic wavelength of the corrugation. Within the boundary layer

where the nematic degree of orientation decreases, the tilt angle steepens and gives

rise to a nontrivial structure, which may be interpreted in terms of an effective weak

anchoring potential. It is then possible to relate the effective surface extrapolation

length to the microscopic anchoring parameters. We also analyze the crucial role

played by the boundary conditions assumed on the degree of orientation. Quite

different features emerge depending on whether they are Neumann- or Dirichlet-

like. These features may be useful to ascertain experimentally how the degree of

orientation interacts with an external boundary. Chapter 3 is devoted to the study

of biaxiality [17]. Nematic liquid crystals possess three different phases: isotropic,

uniaxial, and biaxial. The ground state of most nematics is either isotropic or uni-

axial, depending on the external temperature. Nevertheless, biaxial domains have

been frequently identified, especially close to defects or external surfaces. We show

that any spatially varying director pattern may be a source of biaxiality. Indeed,

in the Chapter we introduce the symmetric tensor S = (∇n)(∇n)T . The director

n is an eigenvector of S with zero eigenvalue. It is then established that biaxiality

arises naturally whenever the other two eigenvalues of S are distinct. The eigenvalue

difference may be used as a measure of the expected biaxiality. Furthermore, the

corresponding eigenvectors indicate the directions in which the order tensor Q is

induced to break the uniaxial symmetry about the director n. Finally, these general

considerations are applied to some examples. In particular, when homeotropic an-

choring is enforced on a curved surface, the order tensor becomes biaxial along the

principal directions of the surface. The effect is triggered by the difference in surface

principal curvatures.
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1

Introduction to nematic liquid crystals

The first historical evidence of a liquid crystal happened in 1888 when an Austrian

botanist named Friedrich Reinitzer observed that a material known as cholesteryl

benzoate had two distinct melting points. Reinitzer increased the temperature of

a solid sample and watched the crystal change into a hazy liquid. As he increased

the temperature further, the material changed again into a clear, transparent liquid.

Reinitzer discovered a new phase of matter - the liquid crystal phase. However, the

term liquid crystal itself was coined by Otto Lehmann in the late 19th century and

it has been widely used since then.

Roughly speaking, liquid crystals are intermediate states of matter that behave as

liquids under some aspects (for instance they flow like incompressible fluids) and

resemble crystals with regards to several features, especially optical.

Liquid crystal materials generally have several common characteristics. Among these

are a rod-like easily polarizable molecular structure. The distinguishing character-

istic of the liquid crystalline state is the tendency of the molecules to point along

a common axis, called the director and traditionally denoted by the unit vector n.

This is in contrast to molecules in the liquid phase, which have no intrinsic order.

Crystalline materials exhibit long range periodic order in three dimensions. In the

solid state, molecules are typically arranged in lattice structures, are highly ordered

and have little translational freedom. They possess positional and orientational or-

der.

On the contrary, by definition, an isotropic liquid has no orientational nor positional

order. Substances that are not as ordered as a solid, yet have some degree of align-

ment are properly called liquid crystals: systems with orientational order without

complete positional order. The characteristic orientational order of the liquid crys-

tal state is between the traditional solid and liquid phases. Among these common

characteristics one can distinguish many different liquid crystal phases according to

higher or lower orientational order. Moreover, most liquid crystal compounds ex-

hibit more than one phase as temperature is varied.

The lowest ordered liquid crystal is the nematic liquid crystal whose molecules

closely resemble rods of a typical dimension of 5 - 20 Å. Molecules have no posi-
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2 1. Introduction to nematic liquid crystals

tional order and are able to flow, but as a consequence of the interaction between

neighbors, they tend to align parallel to one another, so as to induce a partial orien-

tational order at the microscopic scale. As well, they posses a mirror symmetry with

respect to a plane orthogonal to the axis. Stated differently, if we exchanged the

“head” with the “tail” of a molecule, the configuration would be indistinguishable.

There are two main reasons why this partial order may not appear: one is because

the thermal motion prevails over molecular interactions (high temperature) and the

other is because molecules are too separate apart so that they cannot interact (low

concentration). So the appearance of a liquid crystal phase has to be viewed as

delicate equilibrium between two opposite tendencies. At low temperatures the sub-

stance is solid and molecules are highly ordered. If the temperature is increased the

melting point is reached, the solid liquefies and enters his liquid crystal phase. As

the temperature is further increased, a critical value TNI is reached which marks the

exit from the liquid crystal phase and the entry in the isotropic phase where the

molecules are randomly oriented.

In the present work we will be dealing uniquely with the nematic phase. However,

for the sake of completeness we mention here other two important phases.

A special class of nematic liquid crystals is called cholesteric or chiral nematic.

Cholesteric molecules resemble helical springs, which may be either right-handed or

left-handed. From a physical standpoint, they much behave like nematics and even

if the mirror symmetry of nematics is broken, nonetheless the molecular interaction

depends only on the orientation and not on handedness. A second interesting fea-

ture of cholesterics, that distinguish them from nematics, is that the director n is

naturally not uniform. Its structure is helical.

The smectic state is another distinct mesophase of liquid crystal substances. Molecules

in this phase show a degree of translational order which is not present in the ne-

matic. In the smectic state, the molecules maintain the general orientational order

of nematics, but also their centers of mass tend to align themselves in layers or

planes. Motion is restricted within these planes, and separate planes are observed

to flow past each other. The increased order means that the smectic state is more

“solid-like” than the nematic. Many compounds are observed to form more than

one type of smectic phase. As many as 12 of these variations have been identified.

1.1 Order parameters

What is a description of the micro-structure of a liquid crystal? A full microscopic

description which assigns a position and an orientation to every molecule, is by far

the most complete. On the other hand, it is by far the most complicate and it

requires a detailed knowledge of all microscopic interactions. Besides the practical
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1.1 Order parameters 3

intractability of such a complex description for more than a few molecules, it is also

superfluous in most circumstances, when only aggregate molecular behavior is im-

portant.

The molecular size of liquid crystals is typically on the scale of nanometers. By

contrast, liquid crystal devices are usually on the micron scale. So another possible

description is statistical. This choice is expected to be valid in the limit of the nearly

molecular length scale, under the assumption that the elementary volumes contain

a sufficiently high number of molecules. These arguments are typical of continuum

theories, which can boast a long and glorious history and have been given precise

mathematical definitions. Bodies consisting of liquid crystals are complex materials

which cannot be framed in the theory of classical continuum mechanics since they

are bodies with microstructure, for which parameters of a microscopic origin have

mechanical meanings also on a macroscopic scale. These latter are often called or-

der parameters.

Let E be a 3-dimensional euclidean space, i.e. a 3-dimensional Riemann manifold

such that we can obtain an atlas with just one coordinate chart, a Cartesian coor-

dinate system (x, y, z) which gives us a bijection between E and R
3, and such that

every tangent space TpE , p ∈ E is isomorphic to R
3. The inner product is the usual

dot product in R
3. Elements of E are called points, while elements of the tangent

spaces are called vectors.

The region of E occupied by the liquid crystal will be denoted by B .

Suppose to know the probability density function fp : S
2 → R+ that describes at

each point p ∈ B the probability distribution of the orientation of the molecules at

p. The orientation of the molecular axis is described at each point in space by a

point of the unit sphere S
2 (or by a unit vector). Thus, if ω is any subset of S

2, the

probability of finding in p one molecule oriented within ω is given by

P{ω} =

∫

ω
fp(l) da, (1.1)

where a denotes the area measure on S
2. Due to nematics mirror symmetry, the

“head” and “tail” of a molecule can be changed without experiencing any change in

the probability distribution, i.e. the two configurations have the same probability.

Mathematically this is translated by the requirement that fp is an even function:1

fp(l) = fp(−l) for all l ∈ S
2. (1.2)

1The fact that fp(l) = fp(−l) tells us that opposite points of S
2 can be identified, so that the

domain of fp can be restricted to the projective plane RP
2 ∼= S

2/Z2, i.e. the sphere where any

two antipodal points are identified. Thus RP
2 seems to be the most appropriate manifold to set

the theory. Though for historical reasons and since S
2 is more familiar, we will stay on the side of

tradition.
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4 1. Introduction to nematic liquid crystals

As a consequence, the first moments of the distribution function fp are zero:

m =

∫

S2

l fp(l) da = 0. (1.3)

To obtain non trivial information we need to calculate the second moments, which

are represented by the second-order tensor

M =

∫

S2

(l ⊗ l) fp(l) da. (1.4)

It is straightforward to show that M is a unit trace symmetric tensor.

trM =

∫

S2

tr (l⊗ l) fp(l) da =

∫

S2

fp(l) da = 1 (1.5)

MT =

∫

S2

(l⊗ l)T fp(l) da = M. (1.6)

So, by the spectral decomposition theorem, M can be diagonalised by means of an

orthogonal tensor and its eigenvalues are regular. If λ1, λ2 and λ3 are the eigenvalues

with associated unit eigenvectors (e1, e2, e3), then the spectral decomposition is

M = λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3. (1.7)

M is positive semidefinite, in fact if λ is an eigenvalue of M and e ∈ S
2 is the

respective unit eigenvector, we have

λ = e ·Me =

∫

S2

(l · e)2 fp(l) da ≥ 0. (1.8)

The eigenvalues of M then sum up to one, so that its spectrum is bounded by

sp (M) ⊆ [0, 1]. (1.9)

Only one of the three cases may happen: (a) λi = 1
3 i = 1, 2, 3, (b) one eigenvalue

is greater than 1
3 while the other two are not greater than 1

3 and (c) one eigenvalue

is smaller than 1
3 while the other two are not less than 1

3 . In the following we will

assume that in cases (b) and (c) the different eigenvalue is labeled with λ1 and we

will call the associated eigenvector e1 the director n. Case (a) corresponds to the

isotropic case, in fact when

fp(l) =
1

4π
, (1.10)

it is λ1 = λ2 = λ3. Since trM = 1 then we have

Misotropic =
1

3
I. (1.11)
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1.1 Order parameters 5

In liquid crystals literature, the order parameter is customary assumed to be the

tensor

Q = M− 1

3
I, (1.12)

so that the isotropy phase corresponds to the case Q = 0 as usual in phase transition

theories. Note that the condition Q = 0 is only necessary to have isotropic phase.

It is possible to find probability distributions other than fp(l) = 1
4π having Q = 0

[83]. These however are rather special cases, henceforth we will always assume the

condition Q = 0 as characteristic of the isotropic phase.2 Clearly, (n, e2, e3) are too

eigenvectors of Q with shifted eigenvalues,

sp (Q) ⊆
[
−1

3
,
2

3

]
, trQ = 0. (1.13)

1.1.1 Uniaxial and biaxial states

If λ1 6= λ2 = λ3 in (1.7), we say that the liquid crystal is uniaxial and it is common

to write Q as

Q = s

(
n⊗ n − 1

3
I

)
, (1.14)

where the director n is the unit eigenvector of M associated to the eigenvalue λ1.

The scalar s is the degree of orientation (or degree of order). Since by (1.14), 2
3s

is an eigenvalue of Q; s takes its values in

s ∈
[
−1

2
, 1

]
. (1.15)

When s = 1, M = n ⊗ n and so all the molecules are aligned along n. When

s = 0 the distribution is isotropic and when s = −1
2 , M = 1

2 (I− n ⊗ n) which is

proportional to the projection operator on the plane orthogonal to n so that the

distribution is planar isotropic. Typical values for s range between 0.3 and 0.9, with

the exact value a function of temperature (see §1.4.2).
If λ1 6= λ2 6= λ3 6= λ1 in (1.7), we say that the liquid crystal is biaxial and we can

write the general expression for Q as [74, 68]

Q = s1

(
n⊗ n− 1

3
I

)
+ s2 (e2 ⊗ e2 − e3 ⊗ e3) , (1.16)

2Such distributions share at least the second moments with the uniform distribution, so that

they can be considered “isotropic” at least to the second moment.
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6 1. Introduction to nematic liquid crystals

1

1
2

−1
2

−1
2

s1

s2

I

II

III

Figure 1.1: (s1, s2) domain. Regions I, II, and III show the values of (s1, s2) for which the

maximum positive eigenvalues are respectively µ1, µ2 and µ3. Molecules exhibit a preferred

direction along the associated eigenvector. Thick lines represent the uniaxial states.

whose eigenvalues are: µ1 = 2
3s1, µ2 = s2 − 1

3s1 and µ3 = −s2 − 1
3s1. Using the

bounds on the eigenvalues of Q, one finds that the admissible values for (s1, s2) are

−1

2
≤ s1 ≤ 1 , −1 − s1

3
≤ s2 ≤ 1 − s1

3
. (1.17)

This admissible domain is depicted in Figure 1.1. The parameter s2 ranges in[
−1

2 , 1
2

]
, but not all the values of (s1, s2) ∈

[
−1

2 , 1
]
×
[
−1

2 , 1
2

]
are allowed.

When s2 = 0, (1.16) reduces to (1.14) and the liquid crystal is uniaxial, so that

the scalar s2 can be interpreted as the biaxial amplitude. Note, however, that also

when s2 = ±s1 two of the eigenvalues are equal and the liquid crystal is uniaxial.

Bold lines in Figure 1.1 represent uniaxial states. The representation given by (1.16)

is therefore more expressive when µ1 is the maximum positive eigenvalue. In this

case, in fact, s1 and s2 can be rightly interpreted as a degree of order and a degree

of biaxiality of the liquid crystal. This is shown by the gray area labeled with I

in Figure 1.1 where the values of (s1, s2) are such that µ1 is the maximum positive

eigenvalue and the molecules are mostly oriented along n. Likewise, in regions II and

III the molecules are mostly directed with e2 and e3 respectively. The horizontal

line, in particular, represent the uniaxial states with director n.

We remark that the description given by (1.16) is particularly simple and meaningful

in the case of a “nearly uniaxial state” all within the liquid crystal, where s2 is small

(so that µ1 > µ2 and µ1 > µ3).

In the general case, one finds in literature the expressions for the degree of order
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1.1 Order parameters 7

s and the degree of biaxiality β as functions of the eigenvalues of Q [12, 13, 14]

s =

(
27

2
µ1µ2µ3

)1/3

(1.18)

β =
(
6
√

3 |(µ1 − µ2)(µ2 − µ3)(µ3 − µ1)|
)1/3

. (1.19)

s takes values in
[
−1

2 , 1
]

and it is consistent with the formula (1.14) when two

eigenvalues are equal. β ranges in the interval [0, 1] and it is clearly zero whenever

two eigenvalues are equal (uniaxial states). Its expression (1.19) is normalized so

that a state with maximum biaxiality would correspond to β = 1.

Remark 1.1. Using notation of (1.16), one can write s and β in terms of s1 and s2 as

follows

s =
[
s1

(
s2
1 − 9s2

2

)]1/3
(1.20)

β =
(
12

√
3 |s2(s1 + s2)(s1 − s2)|

)1/3

. (1.21)

Equivalently, it is often found the definition of the degree of biaxiality in terms of

trQ2 and trQ3 [51, 53, 52]

β2 = 1 − 6

(
trQ3

)2

(trQ2)3
(1.22)

Remark 1.2. Every point p ∈ S
2 can be identified by a unit vector l ∈ R

3. Choosing

a orthonormal frame of reference (e1, e2, e3) at the point O ∈ E , a unit vector l can be

represented in spherical coordinates,

l = sin ϑ cosϕ e1 + sin ϑ sin ϕ e2 + cosϑ e3. (1.23)

Explicitly, Q is

Q =




< sin2 ϑ cos2 ϕ − 1

3 > < sin2 ϑ sin ϕ cosϕ > < sinϑ cosϑ cosϕ >

< sin2 ϑ sin ϕ cosϕ > < sin2 ϑ sin2 ϕ − 1
3 > < sin ϑ cosϑ sinϕ >

< sinϑ cosϑ cosϕ > < sin ϑ cosϑ sin ϕ > < cos2 ϑ − 1
3 >



 (1.24)

where we have denoted with the angle brackets < > the ensemble average with respect to

the probability distribution f(ϑ, ϕ)

< g(ϑ, ϕ) >:=

∫ 2π

0

dϕ

∫ π

0

fp(ϑ, ϕ)g(ϑ, ϕ) sin ϑdϑ. (1.25)

If we use the orthonormal frame given by the eigenvectors of Q, with the director n ≡ e3,

then ϑ measures the angle between the molecules at O and the director. With this choice

of the axes, Q is diagonal, so that we can compare the diagonal elements of (1.24) with the

expression (1.16) and gather direct expressions of s1 and s2

s1 =
1

2
< 3 cos2 ϑ − 1 > s2 =

1

2
< sin2 ϑ cos 2ϕ > (1.26)
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8 1. Introduction to nematic liquid crystals

1.2 Frank’s classical theory

We make the assumption that the equilibrium configurations of the liquid crystal

attain the minima of a free energy functional. In the classical theory the degree of

orientation is regarded as a prescribed positive constant and the liquid crystal is

assumed to be uniaxial. Posing s = constant > 0 and β = 0, the order parameter

may be described only through the director n. Let B the regular region of the

euclidean space E occupied by the liquid crystal. Then the orientation of the director

is described by a mapping:

n : B → S
2 (1.27)

which is assumed for the moment to be at least of class C1
(
B, S2

)
.

1.2.1 Bulk free energy

The classical theory takes the bulk free energy of liquid crystals as given by the

functional

Ffr[n] =

∫

B
Ψ(n,∇n)dv (1.28)

The free energy density Ψ(n,∇n) is customarily assumed to depend only upon n and

its first gradient ∇n. Since n ·n = 1, ∇n cannot be an arbitrary element of L
(
R

3
)
,

where we have denoted with L
(
R

3
)

the space of the linear mappings R
3 → R

3, but

must satisfy

(∇n)T
n = 0. (1.29)

Stated differently, using a more geometric language, ∇n is a differential mapping

between tangent spaces

∇n(p) = dpn : TpB → Tn(p)S
2 (1.30)

where we have denoted with TpB ≡ TpE
∼= R

3 the tangent space of B at p ∈ B
and with Tn(p)S

2 the tangent space of the unit sphere in n(p). Using the fact that

TnS
2 = n⊥, the orthogonal complement of n, one has that for all v ∈ R

3, (∇n)v is

orthogonal to n,

(∇n)v · n = v · (∇n)T n = 0 ∀v ∈ R
3, (1.31)

so that we get to the same conclusion as before.

Therefore the domain of the energy density Ψ is the set

DΨ =
{
(n,N) : n ∈ S

2,N ∈ L
(
R

3
)
,NTn = 0

}
. (1.32)

The physical insight of the problem suggests a list of requirements that Ψ must

obey [83]:
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1.2 Frank’s classical theory 9

(i) frame-indifference: Ψ must be the same in any two frames, i.e. indepen-

dently from the observer, therefore it must be indifferent to rigid rotations

(ii) material-symmetry: when B suffers a mirror reflection, the energy density

must remain unaffected.

(iii) evenness: Ψ must be indifferent to the change n → −n

(iv) positive definiteness

The mathematical translations of these requirements are the hypothesis of the fol-

lowing theorem, due to Frank, which provides an explicit form for the energy density

[43].

Theorem 1.3. Assume that Ψ : DΨ → R satisfies the following conditions, for

every n : B → S
2:

(a) Ψ
(
Rn,R∇nRT

)
= Ψ (n,∇n) , ∀R ∈ O(3)

(b) Ψ (−n,−∇n) = Ψ (n,∇n)

(c) Ψ (n,∇n) ≥ 0 and Ψ (n,∇n) = 0 if and only if n is constant.

Assume moreover that Ψ (n,∇n) depends at most quadratically on ∇n.

Then the free energy density has the form

ΨFr (n,∇n) = K1 (divn)2 + K2 (n · curln)2 + K3 |n ∧ curln|2

+ K24

(
tr∇n2 − (div n)2

)
(1.33)

K1, K2, K3 and K24 are called the splay, bend, twist and saddle-splay moduli,

respectively. Using a tensor notation, equation (1.33) can be rewritten

ΨFr (n,N) = K1 (trN)2 + K2 (W(n) · N)2 + K3 |Nn|2

+ K24

(
trN2 − (trN)2

)
(1.34)

where we have set ∇n = N and we have made use of the relations (see [83] for

details)

curln ∧ n = (∇n)n (1.35)

divn = tr∇n (1.36)

n · curln = W(n) · ∇n. (1.37)

We remind that W(n) is the skew second order tensor associated with n so that

W(n)n = 0 and for all v ∈ R
3, W(n)v = n ∧ v. In such a case n is called

the axial vector of W. The inner product between tensors is defined such that

A · B = tr
(
ATB

)
.

electronic-Liquid Crystal Dissertations - June 01,  2007

http://www.e-lc.org/dissertations/docs/2007_05_31_11_51_18



10 1. Introduction to nematic liquid crystals

It must also be emphasized that the Ki values depend on the temperature T and

decrease rather strongly when T increases but their ratio is nearly independent of

T .

In many cases the full form (1.33) is too complex to be of practical use, either

because the relative values of the elastic constants Ki are unknown, or because the

equilibrium equations are extremely difficult to solve. In such cases, one may resort

to the one-constant approximation; this amount to assuming

K1 = K2 = K3 = K24 = K. (1.38)

After some calculus, one can show that the free energy takes the form

ΨFr (n,∇n) = K|∇n|2. (1.39)

Even if the free energy density (1.39) does not provide very accurate solutions,

nevertheless its simpler form makes it a valuable tool to reach a qualitative insight

into distortions in nematics. Hereafter we will always make use of the one-constant

approximation and take the equation (1.39) as the expression of the free energy

density in the classical theory of nematic liquid crystals.

Remark 1.4. The function multiplying K24 is a null-lagrangian, that is a free energy

density which does not contribute to the equilibrium equations of the free energy functional

(1.33). Indeed it can be shown that

Ψ24(n,∇n) = tr∇n2 − (div n)
2

= div(v), (1.40)

where v is the vector field defined by

v = (∇n)n − (div n)n. (1.41)

Let ν and ∂B be respectively the unit outer normal and the boundary of B and let ∇sn be

the surface gradient of n on ∂B, defined by

∇sn = ∇n (I − ν ⊗ ν) . (1.42)

Then it follows that

(∇sn)n · ν =(∇n)n · ν − (n · ν)(∇n)ν · ν, (1.43)

(tr∇sn)n · ν =(tr∇n)(n · ν) − (n · ν)(∇n)ν · ν, (1.44)

and so

((∇sn)n − (divs n)n) · ν = ((∇n)n − (div n)n) · ν (1.45)

where divs n is defined such that

divs n = tr∇sn = tr (∇n (I − ν ⊗ ν)) . (1.46)
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1.2 Frank’s classical theory 11

Then, by the divergence theorem,

∫

B

(
tr∇n2 − (div n)2

)
dv =

∫

∂B

(
(∇n)n − (div n)n

)
· ν da

=

∫

∂B

(
(∇sn)n − (divs n)n

)
· ν da. (1.47)

Thus Ψ24 gives rise to a surface energy that does not contribute to the equilibrium equations

for the functional (1.33), but it generally enters the boundary conditions. However, in the

special case where Dirichlet conditions are assumed, the field n is prescribed at the boundary

so that also the surface derivatives of n are known on ∂B and expression (1.47) is determined.

Therefore, when n is subject to strong anchoring conditions the surface contribution of Ψ24

is the same for all admissible orientation fields.

Ericksen has given a set of conditions that the Frank’s constants must satisfy to

render ΨFr positive definite [35].

Theorem 1.5. The function ΨFr in (1.34) satisfies

ΨFr (n,N) ≥ 0 (1.48)

for any given n ∈ S
2 and for all N ∈ L

(
R

3
)

if, and only if,

2K1 ≥ K24, K2 ≥ |K2 − K24|, K3 ≥ 0 . (1.49)

1.2.2 Splay, bend and twist fields

The constants K1, K2, K3 are directly associated with three basic types of deforma-

tions. It is in fact possible to generate deformations that are pure splay, pure bend

and pure twist using which the values of the material constants Ki (i = 1, 2, 3) can

be experimentally determined [32].

Consider a system of cylindrical coordinates (ρ, ϑ, z) and the coordinate orthonormal

base (eρ, eϑ, ez). Let ns be the splay field defined by (see Figure 1.2(a))

ns = eρ. (1.50)

It can be shown that

∇ns =
1

ρ
eϑ ⊗ eϑ, (1.51)

whence it follows that

divns =
1

ρ
, curlns = 0 , tr (∇ns)

2 =
1

ρ2
. (1.52)
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12 1. Introduction to nematic liquid crystals

(a) (b)

Figure 1.2: (a) Splay field (divn 6= 0). (b) Bend field (curln⊥n).

Figure 1.3: Twist field (curln ||n).

The Frank’s elastic energy depends only on K1: ΨFr (n,∇n) = K1
1
ρ2 .

In the same cylindrical coordinate system, define the bend field nb by (see Figure

1.2(b))

nb = eϑ. (1.53)

We have

∇nb = −1

ρ
eρ ⊗ eϑ, (1.54)

whence

divnb = 0 , curlnb =
1

ρ
ez , (∇nb)nb = −1

ρ
eρ , (∇nb)

2 = 0 . (1.55)

Therefore, the Frank’s elastic energy depends only on K3: ΨFr (n,∇n) = K3
1
ρ2 .

K2 enters into play when we consider the twist field. We take now a system of

Cartesian coordinates (x, y, z) and the coordinate orthonormal base (i, j,k). nt is
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1.2 Frank’s classical theory 13

defined by (see Figure 1.3)

nt = cos (tz) i + sin (tz) j (1.56)

which follows an helical pattern and the scalar t is also referred to as the twist. After

some calculus, we yield

divnt = 0 , curlnt = −tnt , (∇nb)
2 = 0 . (1.57)

and ΨFr (n,∇n) = K2 t2 for the bulk free energy.

Remark 1.6. It must be noted that the splay and bend fields are discontinuous in ρ = 0.

We say that the z axis is a defect for these fields. Moreover an integration of the energy

density over a cylinder enclosing a portion of the z axis yields an infinite result. This has

been the main motivating reason for the search of a new theory able to handle the energetics

of defects.

1.2.3 Equilibrium equations

In this Section we derive the general Euler-Lagrange equations for the energy func-

tional (1.28). Therefore we set the first differential of Ffr equal to zero. Proceeding

in a customary way, we get

dFfr[n]u =
∂

∂ε

∫

B
Ψ(n + εu,∇n + ε∇u)dv

∣∣∣∣
ε=0

=

∫

B

(
∂Ψ

∂n
· u +

∂Ψ

∂∇n
· ∇u

)
dv

=

∫

B

(
∂Ψ

∂n
− div

∂Ψ

∂∇n

)
· udv +

∫

B
div

((
∂Ψ

∂∇n

)T

u

)

dv

=

∫

B

(
∂Ψ

∂n
− div

∂Ψ

∂∇n

)
· udv +

∫

∂B

∂Ψ

∂∇n
ν · uda. (1.58)

The divergence of a tensor is defined such that for every tensor L and for all constant

vectors a

div
(
LTa

)
= a · divL. (1.59)

In (1.58) we have used the identity

div
(
LTu

)
= L · ∇u + divL · u. (1.60)

We cannot immediately deduce the Euler-Lagrange equations from (1.58) since not

all the variations u are admissible. In fact Ψ is defined when n ∈ S
2, then its

differential must be a linear map taking values in TnS
2 with respect to the first
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14 1. Introduction to nematic liquid crystals

argument. Stated directly, the allowed variations are those for which the “varied

vector field” n + εu is still an element (at the first order) of S
2 as ε → 0. From

the requirement that (n + εu) · (n + εu) = 1 at the first order we get the condition

u · n = 0, so that u ∈ TnS
2 = n⊥. Introducing the projection operator on the

tangent space , we can thus write an arbitrary u as

u = (I − n⊗ n)w = P(n)w (1.61)

for a suitable w ∈ R
3. Using the symmetry of P(n), equation (1.58) then becomes

dFfr[n]u =

∫

B
P(n)

(
∂Ψ

∂n
− div

∂Ψ

∂∇n

)
·w dv +

∫

∂B

∂Ψ

∂∇n
ν · uda. (1.62)

Equilibrium configurations must render this expression zero for all w ∈ R
3, therefore

we gather from the first integral the bulk equilibrium equations

P(n)

(
∂Ψ

∂n
− div

∂Ψ

∂∇n

)
= 0. (1.63)

However, in practice, the equilibrium equations are rarely used in this general form;

it is often more convenient to express the unit vector n in terms of suitably chosen

polar angles and to write that Ffr is a minimum with respect to all variations in

these angles.

1.2.4 Anchoring

The second term in (1.62) gives an equation that must be satisfied at the boundary

and whose form depends strongly on the assumed boundary conditions. It can be

further simplified by means of the following lemma.

Lemma 1.7. Be Ψ : DΨ → R : (n,N) 7→ Ψ(n,N) a smooth map. Then

P(n)
∂Ψ

∂n
=

∂Ψ

∂n
(1.64)

P(n)
∂Ψ

∂N
=

∂Ψ

∂N
(1.65)

Proof. The proof is just a matter of properly understand how the differential of Ψ is

defined. Let’s denote with Ln the space of linear mappings between R
3 and TnS

2 = n⊥.

Clearly, by definition, if N ∈ Ln then NTn = 0. The differential of Ψ is a map

d(n,N)Ψ : TnS
2 × Ln → R, (1.66)

whose general expression is

d(n,N)Ψ(h,H) = 〈a,h〉 + 〈A,H〉, (1.67)
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1.2 Frank’s classical theory 15

where the angle brackets represent duality between linear spaces and a and A are elements

of the dual spaces. In particular a ∈
(
TnS

2
)∗

. By the representation theorem of linear

spaces (i.e. the fact that a finite dimensional linear space V is isomorphic to its dual V ∗,

the isomorphism being induced by the inner product in V ), there exist unique elements
∂Ψ
∂n

∈ TnS
2 and ∂Ψ

∂N
∈ Ln so that

d(n,N)Ψ(h,H) =
∂Ψ

∂n
· h +

∂Ψ

∂N
·H (1.68)

where, as usual in continuum mechanics, we have used the same symbol (the dot product)

for two conceptually different inner products (the first is the usual scalar product between

vectors while the second acts on double tensors). Then (1.64) is an immediate consequence

of ∂Ψ
∂n

∈ TnS
2.

Moreover, since ∂Ψ
∂N

∈ Ln we have for all vectors w ∈ R
3

∂Ψ

∂N
w · n = 0, (1.69)

and equation (1.65) follows. �

By the use of equation (1.65), the surface integral then yields, for all variations

w ∈ R
3 ∫

∂B

∂Ψ

∂∇n
ν · w da = 0 (1.70)

The easiest case is when Dirichlet conditions are assumed on ∂B, so that the value

of n is prescribed on the border of the domain. Then w must vanish identically on

∂B and so no surface energy contributions come from the integral in (1.70). This is

known as strong anchoring condition. In this case the molecules are constrained

to hold a prescribed orientation at the limiting surfaces and are said to be subject

to strong anchoring forces. These forces are due partly to the detailed form of the

interparticle potentials near the boundary of the sample, and partly to the ways

of preparing the surface on a mesoscopic length scale. For instance, when a glass

surface is rubbed in one direction, the nematic molecules tend to line up along this

direction. A clear microscopic explanation of this effect is still lacking. Berreman

[11] gives an explanation on the basis of the additional elastic energy that would

occur in a nematic liquid crystal if the molecules were not parallel to the grooves.

Likewise, energy considerations would explain a tendency for the molecules to line

up normal to the surface when it is rubbed in both dimensions.

In recent years several alternative methods of alignment have been proposed, for

example, photoalignment by means of a polarized laser beam [45], atomic force

microscope treated surfaces [72] or alignment with atomic beams [24].

When no conditions are assumed at the boundary, the second integral must vanish

for all the possible variations and can be treated in precisely the same way as the
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16 1. Introduction to nematic liquid crystals

first. This leads to the natural (or Neumann) boundary conditions and corresponds

to the fact that the limiting surface exerts no anchoring on the liquid crystal. The

equations that give such condition are

∂Ψ

∂∇n
ν

∣∣∣∣
∂B

= 0. (1.71)

An intermediate and more realistic condition between the strong anchoring and the

total lack of anchoring, is provided by the weak anchoring condition. In such case,

molecules close to the boundary have a preferred direction imposed by the limiting

surface (for instance, by means of mechanical or chemical treatment) but can deviate

from this prescribed direction at the cost of some surface energy. Weak anchoring

forces does not provide a boundary condition, but add a surface term to the energy

functional (1.28)

Fw[n] = W

∫

∂B
fw(n) da, (1.72)

which is called anchoring energy. The function fw(n) must attain a minimum for

a particular n0 ∈ S
2 whose direction is called the easy axis. W is the anchoring

strength.

We note that the same arguments found in the proof of Lemma 1.7 hold for ∂fw

∂n
and

therefore one can show that ∂fw

∂n
= P(n)∂fw

∂n
. Performing the first variation of Fw[n]

yields the term

dFw[n]u = W

∫

∂B

∂fw

∂n
·uda = W

∫

∂B
P(n)

∂fw

∂n
·w da = W

∫

∂B

∂fw

∂n
·w da, (1.73)

where u is an arbitrary vector belonging to the orthogonal space n⊥ and w ∈ R
3 is

such that u = P(n)w.

Joining the latter expression to the boundary term in equation (1.62), we obtain the

equation that must be satisfied at the boundary

∂Ψ

∂∇n
ν + W

∂fw

∂n
= 0 on ∂B. (1.74)

The most commonly used expression for the surface free energy is of the form pro-

posed by Rapini and Papoular [69]

Fw[n] = W

∫

∂B
(n · ν)2 da, (1.75)

where the anchoring strength W is assumed constant throughout the limiting sur-

face. When W > 0, Fw is minimum when n⊥ν, so the easy axis is tangent to the

boundary and we speak of degenerate planar weak condition. When W < 0 the

minimum of Fw is attained when n||ν, the easy axis is along the normal vector ν
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1.2 Frank’s classical theory 17

and this situation is referred to as hometropic weak anchoring.

A straightforward generalization of the above formula is obtained when two different

coefficients are introduced: the azimuthal anchoring strength Wϕ related to director

deviation in the tangent plane to the limiting surface and the zenithal (or polar) an-

choring strength Wϑ related to the director deviations in the direction perpendicular

to the liquid crystal-substrate boundary.

Remark 1.8. In principle, there is no reason why fw(n) should depend only on the

director n. In the more general framework of the new theory, the anchoring energy can

depend on the whole tensor Q and in particular on the surface order parameter s. A

possible generalization [65, 8] is

fw(Q) = W tr (Q− Q0)
2
, (1.76)

where Q0 is the order parameter preferred at the surface.

In the uniaxial case where Q0 is written as in (1.14), it comprises an easy axis n0 and a

preferred surface ordering s0. Explicitly,

fw(s,n) =
2

3
W
(
s2 + s2

0 + ss0

(
1 − 3(n · n0)

2
) )

. (1.77)

Expression (1.77) looks like the Rapini-Papoular expression if s is constant. Note that when

n||n0, equation (1.77) has a minimum in s = s0 as expected.

1.2.5 Existence of minimizers

Throughout this Section we assume that the region B occupied by a nematic liquid

crystal has a smooth boundary. We consider the existence of minimizers for the

Frank’s energy functional (1.33), when strong anchoring conditions are assumed at

the boundary [48, 49] (mathematically this amounts to using Dirichlet conditions on

∂B).

Let H1
(
B, R3

)
the Sobolev space of the L2-mappings with first weak derivatives in

L2, and consider the closed subset

H1
(
B, S2

)
=
{
n ∈ H1

(
B, R3

)
: |n| = 1

}
. (1.78)

Under the assumption of strong anchoring conditions, n is prescribed at the bound-

ary

n|∂B = n0; (1.79)

the class of admissible functions is

A (n0) =
{
n ∈ H1

(
B, S2

)
: n0 is the trace of n on ∂B

}
3. (1.80)

3We don’t want to go into the mathematical details of properly defining the trace operators. It

is sufficient to say that n0 can be assumed to stand in another Sobolev space, usually denoted with

H1/2(∂B, S
2).
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18 1. Introduction to nematic liquid crystals

The following theorem guarantees that there is always a minimum for F in A [83].

Theorem 1.9. For any given n0 : ∂B → S
2 there is a mapping n̂ ∈ A (n0) where

F attains its minimum:

F [n̂] = min {F [n] : n ∈ A (n0)} . (1.81)

1.3 Freedericksz transition

The tensor order parameter Q of the nematic phase is a microscopic articulation of its

anisotropy. The macroscopic analogue involves the electric or magnetic susceptibility.

In an isotropic and linear medium, the electric displacement D and the magnetic

moment density (or magnetization) M are directly respectively proportional to the

electric and magnetic fields inducing them: D = εE and M = χH, where ε is the

dielectric constant and χ is the magnetic susceptibility.

In the case of a uniaxial nematic fluid the material constants ε and χ are no longer

scalars. They too are tensors, with the same eigenvectors as the order parameter

ε = ε|| n⊗ n + ε⊥ (I − n⊗ n) = ε⊥I + εan⊗ n (1.82)

χ = χ|| n⊗ n + χ⊥ (I − n⊗ n) = χ⊥I + χan⊗ n, (1.83)

where ε|| and χ|| are exhibited by the material when the electric and magnetic fields

are applied parallel to the director n, ε⊥ and χ⊥ are relative to fields lying in the

plane orthogonal to n, εa = ε|| − ε⊥ is the dielectric anisotropy and χa = χ|| − χ⊥
is the diamagnetic anisotropy. The electric displacement D and the magne-

tization M become

D = εE = ε⊥E + εa (E · n)n (1.84)

M = χH = χ⊥H + χa (H · n)n. (1.85)

E and H represent the fields suffered by the liquid crystal; it is taken to be equal to

the field created from outside the material. In other words, we assume that E and

H are strong enough not to get distorted within the liquid crystal (see [33, 75, 63]

for discussions not employing this assumption).

The free energy density associated with the fields (expressed in c.g.s. units) are

Ψe = − 1

8π
D · E = − 1

8π

(
ε⊥ |E|2 + εa (E · n)2

)
(1.86)

Ψm = − 1

2
M · H = −1

2

(
χ⊥ |H|2 + χa (H · n)2

)
. (1.87)
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1.3 Freedericksz transition 19

In (1.86) and (1.87), the terms independent of the nematic director n do not affect

the minimum of the energy, they are simply constants since the electric and mag-

netic fields are assumed to be imposed from the outside and can be omitted for the

purposes of the present discussion. Since in nematics it is found that χa > 0, a

glance at equation (1.87) tells that Ψm is minimized when the director n is parallel

to the magnetic field H. The effective molecular orientation will be the result of the

competing energy contributions of the boundary surface potential, the elastic dis-

tortion and the magnetic (or electric) external field. Whereas for the electric field,

Ψe is minimized by E||n if εa > 0 and by E⊥n if εa < 0. So, in particular, when the

dielectric anisotropy is negative and in absence of other distorting causes, an electric

field tends to align the molecules perpendicularly to its direction.

1.3.1 Instability and pitchfork bifurcation

We will limit ourselves to a rather simple example, for a more complete treatment

see [33, 81, 75, 83, 63]. In a Cartesian coordinate system (O;x, y, z) with unit vectors

(i, j,k), let’s consider a nematic liquid crystal confined between two parallel plates

placed at z = −d/2 and z = d/2, subject to strong anchoring at the external sur-

faces. The director at the boundary is assumed to lie in the boundary planes along

the x-axis. So, in the absence of any external action, the nematic is in homogeneous

planar alignment n = (1, 0, 0). A homogeneous magnetic field H is applied orthog-

onally to the delimiting plates and tends to align the molecules along the z-axis (a

completely analogous treatment would hold if we chose an electric field E). There

is then a competition between the aligning forces at the surface, favouring n||i and

in the bulk, favouring n||k. The elastic forces then take into account the fact that

the nematic is not willing to exhibit inhomogeneity. At low magnetic fields, the

aligning force is weak and the elastic bend price is too high to alter the uniform

surface-induced alignment. At high fields, the liquid crystal aligns parallel to the

field except in thin boundary layers close to the surface. This transition is known

as Freedericksz transition and occurs at a critical value of the magnetic field

(Freedericksz threshold) where the director just begins to turn toward the magnetic

field.

We assume plane deformations of the director field. In that case, the following rep-

resentation of the director is possible n = (cos ϑ, 0, sin ϑ). The angle ϑ is determined

by the director n and the x−axis and it will be a function of z coordinate only. The
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20 1. Introduction to nematic liquid crystals

magnetic field is H = Hk. Within these hypotheses, the free energy density is

Ψ = ΨFr + Ψm = K|∇n|2 − 1

2
χa (H · n)2

= K

(
dϑ

dz

)2

− 1

2
χaH

2 (sin ϑ)2 . (1.88)

By introducing the scaled variable z̄ = z/d and defining

λ =
χa

2K
(Hd)2 (1.89)

the equilibrium solutions are given by the minima of the functional

F =

∫ 1/2

−1/2

(
ϑ′2 − λ (sin ϑ)2

)
dz̄. (1.90)

where the prime denotes differentiation with respect to the scaled variable z̄. In the

case of strong anchoring, boundary conditions are

ϑ|z̄=±1/2 = 0, (1.91)

so that the trivial solution ϑ(z̄) ≡ 0 is always a stationary point of the functional

(1.90). When the Freedericksz transition is reached, a pitchfork bifurcation occurs

in the solution: below the transition, at low fields, only the trivial ϑ(z̄) ≡ 0 solution

is allowed, whereas above the transition two other symmetric non-trivial solutions

appear. We are interested in the determination of the critical value λcr at which

the Freedericksz transition happens. A technique presented in [64] and reported in

Appendix A will be hereafter applied. Assume that λ is incremented by a small

amount above a value λ0 ≤ λcr (which will be later set equal to the critical value

λcr)

λ = λ0

(
1 + ε2

)
, (1.92)

where ε simply represent a small quantity. The minimum of (1.90) can be expanded

in terms of ε. Retaining only the first term, and considering that the zero-th or-

der solution is the trivial one, we can write ϑ(z̄) = εϑ1(z̄). Next, we consider the

expansion of the functional (1.90) up to the O
(
ε4
)

term

F = ε2

∫ 1/2

−1/2

(
ϑ′2

1 − λ0ϑ
2
1

)
dz̄ + ε4 λ0

∫ 1/2

−1/2

(
1

3
ϑ4

1 − ϑ2
1

)
dz̄ + o(ε4). (1.93)

The O
(
ε2
)

term provides an equation for ϑ1(z̄) : ϑ′′
1 + λ0 ϑ1 = 0. Taking into ac-

count the boundary conditions, one finds that the only non-trivial solutions are of

the type ϑ1(z̄) = A1 cos(
√

λ0 z̄), where λ0 must satisfy the condition

sin
√

λ0 = 0. (1.94)
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1.3 Freedericksz transition 21

Therefore the critical value of λ is the lowest non-null solution of equation (1.94). A

corresponding critical value Hcr for the applied magnetic field is gathered:

λcr = π2, Hcr =

√
2K

χa

π

d
. (1.95)

The value of A1 can be determined by using the O
(
ε4
)

term in (1.90). Taking into

account the expression found for ϑ1(z̄) and performing the integration, the O
(
ε4
)

term of the functional is

ε4 π2

8
A2

1

(
A2

1 − 4
)
. (1.96)

Minimization of the energy functional is then possible up to this term by means of

a minimization of (1.96) with respect to A1. Imposing the derivative of (1.96) with

respect to A1 equal to zero, it is easily obtained a third order polynomial equation

in A1 whose non-null solutions are A1 = ±
√

2. We can conclude that there are two

possible opposite solution just above the critical value λcr depending on the sign of

the coefficient A1

ϑ1(z̄) = ±
√

2 cos(πz̄). (1.97)

They correspond to the fact that the transition can be induced by magnetic fields

in both positive or negative direction of the x-axis.

The double sign is due to the fact that the liquid crystal molecules can arrange them-

selves into two symmetric configurations having the same total energy, one tilted in

a clockwise direction and the other tilted by the same angle in a counterclockwise

direction. It has to be noted that in addition to these solutions there is the trivial

solution A1 = 0 which corresponds to the case ϑ(x) ≡ 0 that is unstable since rep-

resents a relative maximum of the free energy functional.

1.3.2 Applications in LCD technology

The most common application of liquid crystal technology is in liquid crystal displays

(LCDs). From the watch or pocket calculator to an advanced VGA computer screen,

this type of display has evolved into an important and versatile interface.

In general, LCDs use much less power than their cathode-ray tube (CRT) coun-

terparts. Many LCDs are reflective, meaning that they use only ambient light to

illuminate the display. Even displays that do require an external light source (i.e.

computer displays) consume much less power than CRT devices.

We will restrict this discussion to traditional nematic LCDs since the major techno-

logical advances have been developed for this group of devices.
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22 1. Introduction to nematic liquid crystals

Figure 1.4: Schematic of a twist nematic cell (TNC).

A liquid crystal display consists of an array of tiny segments (called pixels) that

can be manipulated independently. This basic idea is common to all displays. Each

pixel is composed by a cell filled with a liquid crystal.

The most common cell used in nowadays technology is the twist nematic (TN)

cell. It consists typically of a liquid crystal placed between two sheets of glass which

are rubbed to control the alignment of the molecules. The molecules follow the

alignment of the grooves: if the grooves are parallel to each other so are the liquid

crystal molecules. The grooves on one sheet of glass are twisted by 90 degrees with

respect to the grooves on the other sheet of glass. The boundary conditions thus

impose that the molecules twist in between the sheets of glass. The optical properties

of the liquid crystal are governed by the tensor M = Q + 1
3I, so that M has not only

a microscopic meaning, but reflects the macroscopic anisotropy of the material. In

particular the Fresnel ellipsoid [83, 23, 47], which determines the optical response

of birefringent materials, is closely linked to M.

It is then no surprise that a distorted field n, like the one in a TN display, manipulates

the polarized light entering the cell. When light enters the TN cell, the polarization

state twists with the director of the liquid crystal material. Crossed polarizers are

attached to the top and bottom of the display. As light enters the cell, its polarization

rotates with the molecules. When the light reaches the bottom of the cell, its

polarization vector has rotated by 90 degrees, and now can pass through the second

polarizer.
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1.4 de Gennes’ theory 23

When an electric field of sufficient magnitude (above the critical value) is applied to

a sample, the molecules undergo a Freederickzs transition, typically aligning their

direction to the electric field. Note that in this state, the twist is destroyed. The

director of the bulk liquid crystal is parallel to the field and no longer twisted.

When polarized light enters a cell in such a configuration, it is not twisted, and is

canceled by the second polarizer. Regions where an electric field is applied appear

dark against a bright background. By properly adjusting the level of the voltage

almost any gray level of transmission can be achieved.

1.4 de Gennes’ theory

When s1 and s2 in equation (1.16) are not constants throughout the region B occu-

pied by the liquid crystal, the microstate is described by s1, s2 and the orthonormal

frame of eigenvectors (n, e2, e3) which amount to give 5 scalars at each point in

space. As described in §1.1.1, qualitatively the degree of orientation s measures on

the macroscopic scale the degree of microscopic order; it may vary in space and

ranges in the interval
[
−1

2 , 1
]
. When s vanishes the molecular orientation is com-

pletely disordered: the liquid crystal becomes an isotropic fluid on the macroscopic

scale. In the isotropic phase n has no definite meaning, since the molecules have no

preferred direction. Therefore n is well defined only where s 6= 0.

If we define the singular set as the set of points of B where s = 0,

S = {p ∈ B : s(p) = 0} , (1.98)

then n is allowed to have discontinuities in S (while Q is still continuous). Thus

within the new theory, defects of liquid crystals are to be interpreted as transitions

to the isotropic phase which happen to be confined in space. The theory that we

employ in this and the following chapters has been strongly motivated by the desire

of a comprehensive treatment of defects. While point defects are described fairly

well within the classical theory, this is not the case for both line and plane defects:

these latter need to be approximated by regular fields in order to keep Frank’s energy

finite.

Equilibrium states of nematics are now given by stationary points of the free-energy

functional whose density, in the absence of external fields, comprises the elastic term,

due to the spatial variation of Q, and the Landau-de Gennes potential, that accounts

for the thermal contribution to the energy

Ψ(Q,∇Q) = Ψel(Q,∇Q) + ΨLdG(Q). (1.99)
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24 1. Introduction to nematic liquid crystals

1.4.1 Defects

Even if we do not deal with defects in the present thesis, we want to mention them

as their study has played an important role in the developing of the new theory of

liquid crystals. In the classical theory we restricted our attention to distortions of

the nematic arrangement that involved continuous variations of the director n. But

there are other important physical situations where n is not a smooth function of

position at all points. We have seen, for instance, that the simple splay and bend

fields, defined in §1.2.2 are discontinuous in ρ = 0 (see Remark 1.6).

Defects in uniaxial nematics are classically described in terms of the spatial distri-

bution on the director. Where the mapping n : B → S
2 is singular we say that

there is a defect. For three-dimensional nematics, the singular regions may be either

zero-dimensional (points), one-dimensional (lines) or two-dimensional (plane). The

defect is then called topologically stable whenever there is no continuous deformation

of the director field that yields the uniform state n = constant.

It must be noted however that even topologically unstable defects can exist in nature

in the case that they are energetically stable. This means that they attain the

minimum of the energy functional and every other admissible configuration (though

possibly non-singular) have higher free energy.

To each defect can be associated a winding number which is a number describing

the topological charge of the defect. We describe an intuitive way to calculate

this number in the easy case of a line defect. Imagine to surround the line defect

by a circular loop γ in B; the only requirement is that γ does not approach the

singular region too closely and the mapping n : B → S
2 restricted to γ is everywhere

continuous. Since in nematics n and −n are indistinguishable, the proper order

parameter space is the projective plane RP
2 = S

2/Z2 i.e. the two dimensional sphere

where antipodal points are identified. Then n maps γ on some closed curve ϕ in

the space RP
2. The curve ϕ can be of two types: (a) a contour that starts and ends

at the same point of S
2 and (b) a contour that connects two diametrically opposite

points of S
2. Loops (a) are also loops for the sphere S

2 itself and because S
2 is simply

connected, ϕ can be contracted to a single point. Since the field corresponding to a

single point is the uniform field n =constant, then the field n can be continuously

deformed to a uniform state and the defect is not topologically stable. By contrast,

loops (b) cannot be contracted: under any continuous deformations their ends must

remain diametrically opposite on the sphere. Thus the corresponding line defects

are topologically stable.

The winding number associated with line defects can be defined as the number of

times that ϕ rounds on the sphere when the defect is orbited once (i.e. when moving

in B along γ). It can be showed that this number is independent on the particular
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1.4 de Gennes’ theory 25

chosen curve γ and depends only on the nature of the defect. From the discussion

above, it is clear that defects (a) have a integer winding number, while defects (b)

have half-integer winding number.

Analogous considerations hold for point defects, where one has to take into account

the mapping of closed surfaces surrounding the defect.

The preceding arguments can be given a precise mathematical meaning in the frame

of algebraic topology by using the homotopy theory (see [60, 15]) and the topological

degree of a map, but due to the introductory level of this paragraph we will not purse

this argument any further.

1.4.2 Landau-de Gennes’ thermodynamic potential

The Landau-de Gennes potential ΨLdG in (1.99) takes into account the material

tendency to spontaneously arrange in ordered or disordered states and must incor-

porate the effects of temperature. Following the work of Landau [56], de Gennes

has proposed the following phenomenological expression for ΨLdG [32], which can be

constructed independently of the detailed nature of the interactions and of molecular

structure,

ΨLdG(Q) = A trQ2 − B trQ3 + C trQ4. (1.100)

The equation (1.100) has been found considering an expansions in powers of Q up

to the fourth order and retaining only those terms that are invariants by rotations

(i.e. frame indifference condition). The first order term is absent since tr Q = 0. We

have no a priori knowledge of the coefficients, but in agreement with molecular the-

ories it is usually assumed that A = a(T − T ∗) and a,B and C are positive material

constants essentially independent of temperature. Coefficients are chosen such that

the minimizer of ΨLdG alone is a uniaxial order tensor. T is the temperature and

T ∗ is the nematic supercooling temperature. For T > T ∗ the potential ΨLdG attains

a local minimum at the isotropic phase, whereas for T < T ∗ this local minimum

ceases to exist and only the nematic phase is possible. The parameter B is usually

much smaller that both |A| and C.

Remark 1.10. It is often found in literature, the expression

ΨLdG(Q) = a(T − T ∗) trQ2 − b trQ3 + c
(
trQ2

)2
. (1.101)

which we show to be equivalent to our expression (1.100).

Let’s denote with µ1,µ2 and µ3 the eigenvalues of Q. By virtue of the Cayley-Hamilton
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26 1. Introduction to nematic liquid crystals

theorem, there are only three independent invariants of Q:

trQ = µ1 + µ2 + µ3 (1.102)

IIQ = µ1µ2 + µ2µ3 + µ3µ1 (1.103)

detQ = µ1µ2µ3. (1.104)

Then we must have that exist coefficients for which the following relations hold

trQ2 = A1 (trQ)
2

+ B1IIQ (1.105)

trQ3 = A2 (trQ)
3

+ B2 trQ IIQ + C2 detQ (1.106)

trQ4 = A3 (trQ)4 + B3 (trQ)2 IIQ + C3 trQ detQ + D3 (IIQ)2 . (1.107)

Since in our case trQ = 0, the first and third of the above expressions yields

trQ4 = α
(
trQ2

)2
, (1.108)

performing an explicit calculation gives α = 1
2 .

Let us study the explicit form of (1.100) in the uniaxial case, where Q can be

represented by

Q = s

(
n⊗ n− 1

3
I

)
. (1.109)

The potential (1.100) is

ΨLdG(s) =
2

9

(
Cs4 − Bs3 + 3As2

)
, (1.110)

whose stationary points are
(
∆ = 9B2 − 96AC

)

s = 0 , s = s± =
3B ±

√
∆

8C
. (1.111)

The following cases can happen

? A < 0 (i.e. T < T ∗): only the liquid crystal phase is possible. Note that when

T is well below T ∗ the liquid freezes and the liquid crystal phase ceases to

exist: our description is no longer valid. s+ > 0 is the absolute minimum for

ΨLdG and it represents the preferred degree of orientation spr.

? A = 0 (i.e. T = T ∗): s = 0 is an inflection point and the absolute minimum is

still spr = s+. T ∗ is the supercooling temperature.

? 0 < A < B2

12C

(
i.e. T ∗ < T < T ∗ + B2

12aC = TNI

)
: ΨLdG possesses two minima:

one at s = 0 and the other at s = s+. The latter is still the absolute (spr =

s+), so that the liquid crystal phase is stable, while the isotropic phase is

metastable.
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spr

T = TNI

T = T ∗

T < T ∗

TNI < T < T+

T = T+

0

0

s

ΨLdG

Figure 1.5: Landau-de Gennes potential as function of the temperature T .

? A = B2

12C

(
i.e. T = T ∗ + B2

12aC = TNI

)
: the two minima at s = 0 and s = s+

have the same value. This temperature marks the transition to the isotropic

phase.

? B2

12C < A < 3B2

32C

(
i.e. TNI < T < T ∗ + 3B2

32aC = T+
)
: the phase with s = s+

becomes metastable, while the isotropic phase is stable.

? A = 3B2

32C

(
i.e. T = T ∗ + 3B2

32aC = T+
)
: ΨLdG possesses the absolute minimum

in s = 0 and an inflection point in s = s+: the nematic phase ceases to exist.

T+ is the superheating temperature.

? A > 3B2

32C (i.e. T > T+): the phase is isotropic.

When the tensor order parameter Q is biaxial and therefore expressed as in (1.16),

the Landau-de Gennes potential (1.100) is

ΨLdG(s1, s2) =
2

9

(
Cs4

1 − Bs3
1 + 3As2

1

)

+
2

9

(
6Cs2

1 + 9Bs1 + 9A
)
s2
2 + 2Cs4

2 . (1.112)

The study of critical points of (1.112) shows that the only admissible solutions, where

s1 and s2 have physical meanings, are s1 = 0, s+ as in (1.111) and s2 = 0. Therefore,

the ground state of the liquid crystal can be either isotropic or uniaxial, depending

on temperature [12]. Even if biaxiality is never preferred, biaxial domains do exist

and have been observed, as it will be discussed in Chapter 3.
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1.4.3 Elastic energy

We now concentrate on the elastic free energy density term Ψel in (1.99). The

potential Ψel accounts of the deformation of the liquid crystal and it is minimum

whenever the molecular distribution is uniform.

The idea is to expand the energy density in terms of Q and ∇Q, as it has been

done with the Frank’s elastic energy (1.33). Physical reasoning imposes that Ψel be

frame-indifferent, i.e. invariant under rigid rotations, therefore all the terms of the

expansion must be scalar functions of Q and ∇Q, built by contraction of indexes.

Note however that due to the constraints Q = QT and trQ = 0, not all possible

contractions are independent; identifying a maximum set of independent invariants

is indeed a non-trivial task.

Assuming that Ψel is quadratic in ∇Q and at most quadratic in Q, it is shown in

[57] that Ψel can be expressed as

Ψel(Q,∇Q) = Ψ2(∇Q) + Ψ3(Q,∇Q) + Ψ4(Q,∇Q), (1.113)

where Ψ3 is linear in Q and Ψ4 is quadratic in Q.

The function Ψ2 is usually written [36] as

Ψ2(∇Q) =
1

2
L1|∇Q|2 + L2 (div Q)2 + L3

∑

i j k

Qij,kQik,j, (1.114)

where a comma denotes differentiation with respect to a fixed orthonormal frame.

In its original paper [31], de Gennes proposed an expression analogous to Ψ2 as the

whole elastic energy density. Assuming Ψel = Ψ2 gives simple expressions for the

Frank’s elastic constants Ki, but it is not able to distinguish between K1 and K3 in

what it gives

K1 = K3 = 2s2
pr (L1 + L2 + L3) , K2 = 2s2

prL1 (1.115)

where spr represents the degree of orientation preferred in the bulk, imposed by

the minimum of ΨLdG. The temperature dependence of Ki is retrieved by the

temperature dependence of spr. This result is unphysical as K1 = K3 is contradicted

by experiments, therefore one needs to consider also the higher order elastic terms

Ψ3 and Ψ4.

It can be shown that Ψ3 has 6 additional independent invariants, while Ψ4 has 13.

To simplify our discussion, we will follow the approach found in [20]. The whole Ψel

involving 22 invariants is nearly intractable, so we decide to retain only those terms

able to separate K1 and K3. Table 4 of [57] collects all contributions to Frank’s

constants to both Ψ3 and Ψ4. Among all the terms, only 9 contribute differently to

K1 than to K3. To take into account the least possible number of terms, we consider
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1.4 de Gennes’ theory 29

only those 4 elements that contribute more to K1 than to K3 and disregard all the

others. Moreover, we assign one and the same value Λ to the four material constants

of these terms.

Finally, we have

Ψ3(Q,∇Q) =
Λ

spr

(
Q · (divQ ⊗ divQ) +

∑

i j k l

QijQik,lQjl,k

)
, (1.116)

Ψ4(Q,∇Q) =
Λ

s2
pr

(
Q2 · (divQ ⊗ divQ) +

∑

i j k l m

QimQmjQik,lQjl,k

)
. (1.117)

The compatibility with Frank’s theory in the case s = spr = constant and β = 0 thus

yields the expressions for the elastic constants Ki

K1 = 2s2
pr

(
L1 + L2 + L3 +

20

9
Λ

)
(1.118)

K2 = 2s2
prL1 (1.119)

K3 = 2s2
pr

(
L1 + L2 + L3 −

4

9
Λ

)
(1.120)

whence it follows that (K1 − K3) = 16
3 s2

prΛ.

The one constant approximation now amounts to assuming

L1 = L , L2 = L3 = 0 , Λ = 0, (1.121)

so that the elastic energy density reads

Ψel(Q,∇Q) =
1

2
L|∇Q|2, (1.122)

where L is an elastic constant which does not depend on temperature.

In the case of uniaxial phase, the order parameter is of the form (1.14) and explicitly

equation (1.122) is

Ψel(s,∇s,∇n) = L

(
1

3
|∇s|2 + s2|∇n|2

)
. (1.123)

Proof of eqn. (1.123). The easiest way to perform this calculation makes use of

the coordinate expression of |∇Q|2. Given a fixed orthonormal frame ei (i = 1, 2, 3), the

components of Q are

Qij = s

(
ninj −

1

3
δij

)
, (1.124)

where δij is the Kronecker delta. We remind that n · n = 1 and (∇n)T
n = 0 so that the

following relations hold
∑

i

n2
i = 1 and

∑

i

ni,kni = 0 (k = 1, 2, 3). (1.125)
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Using a comma to denote the partial differentiation, we have

|∇Q|2 =
∑

ijk

Q2
ij,k =

∑

ijk

(
s,kninj −

1

3
s,kδij + s ni,knj + s ninj,k

)2

=
∑

ijk

(
s2

,kn2
i n

2
j +

1

9
s2

,kδij + s2n2
i,kn2

j + s2n2
j,kn2

i −
2

3
s2

,kninjδij

)

=
2

3
|∇s|2 + 2s2|∇n|2. (1.126)

�

1.4.4 Equilibrium equations

Q is a map from B to the manifold M ⊆ L
(
R

3
)

of the null-trace symmetric tensors,

M =
{
A ∈ L

(
R

3
)

: A = AT , tr(A) = 0
}

. (1.127)

It is easy to show that M is indeed a 5-dimensional manifold and that the tangent

space is at every point isomorphic to M: TQM ∼= M, ∀ Q, so that in any point

Q ∈ M the projection operator PQ : L
(
R

3
)
→ TQM onto the tangent space is

simply, A ∈ L
(
R

3
)

PQ A =
1

2
(A + AT ) − 1

3
tr(A)I. (1.128)

We want to write the general equilibrium equations for the energy functional

F [Q,∇Q] =

∫

B
Ψ(Q,∇Q) dv (1.129)

where Q is constrained to lie in M.

Let us perform a variation Q + εU of the functional where at the moment U is

assumed to be an arbitrary tensor 4. We will introduce afterward the fact that U

cannot be completely arbitrary and is indeed an element of TQM (and therefore

must be symmetric and zero trace). The differential is:

d[Q,∇Q]F(U,∇U) =
∂

∂ε

∫

B
Ψ(Q + εU,∇Q + ε∇U) dv

∣∣∣∣
ε=0

=

∫

B

(
∂Ψ

∂Q
· U +

∂Ψ

∂∇Q
· ∇U

)
dv

=

∫

B

(
∂Ψ

∂Q
− div

∂Ψ

∂∇Q

)
·Udv +

∫

∂B
b · ν da. (1.130)

4To be more precise, we assume that the functional F admits an extension F̂ to the ambient

space L
(
R

3
)

where M is embedded. The differential (1.130) is meaningful in this space.
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1.4 de Gennes’ theory 31

where b is a vector defined, for every constant vector a, by

b · a =
∂Ψ

∂∇Q
· (U ⊗ a). (1.131)

Remark 1.11. In the above derivation we have implicitly used the representation theo-

rem, in much the same way as it was done in the proof of Lemma 1.7. All the inner products

have been denoted by a dot product (as usual in mechanics) even if they actually refer to

different spaces. Under this perspective, the expressions above are better understood when

expressed by components in an orthonormal fixed frame. In fact, in such a way, all the inner

products are simply replaced by a full saturation of indexes.

(
div

∂Ψ

∂∇Q

)

ij

=
∑

k

(
∂Ψ

∂Qij,k

)

,k

,
∂Ψ

∂∇Q
· ∇U =

∑

ijk

∂Ψ

∂Qij,k

Uij,k (1.132)

bk =
∂Ψ

∂∇Qij,k

Uij (1.133)

In deriving expression (1.130) we have used

(
∂Ψ

∂Qij,k

Uij

)

,k

=

(
∂Ψ

∂Qij,k

)

,k

Uij +
∂Ψ

∂Qij,k

Uij,k. (1.134)

For simplicity, we assume Dirichlet conditions at the boundary, so that we can

disregard the surface term in (1.130).

We can now introduce the constraint that U must belong to the tangent space TQM

and write an arbitrary variation U = PQÛ for a suitable tensor Û ∈ L
(
R

3
)
. The

first variation of the functional becomes

d[Q,∇Q]F(U,∇U) =

∫

B
PQ

(
∂Ψ

∂Q
− div

∂Ψ

∂∇Q

)
· Ûdv. (1.135)

Therefore, by the arbitrariness of Û, we obtain the equilibrium equations

PQ

(
∂Ψ

∂Q
− div

∂Ψ

∂∇Q

)
= 0. (1.136)

As example, we write equation (1.136) explicitly for the one constant approximation

[22]. Assume then that the free energy density is

Ψ =
1

2
L|∇Q|2 + A tr Q2 − B trQ3 + C

(
trQ2

)2
, (1.137)

where we have used the Landau-de Gennes’ potential in the form given in Remark
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32 1. Introduction to nematic liquid crystals

1.10, because in the present case allows easier computations.

∂Ψ

∂Q
= 2AQ − 3BQ2 + 4C tr(Q2)Q (1.138)

PQ

∂Ψ

∂Q
= 2AQ − 3BQ2 + 4C tr(Q2)Q + B tr(Q2)I (1.139)

div
∂Ψ

∂∇Q
= Ldiv∇Q = L∆Q (1.140)

PQ div
∂Ψ

∂∇Q
= L∆Q. (1.141)

Therefore, the equilibrium equations are

−L∆Q + 2AQ − 3BQ2 + 4C tr(Q2)Q + B tr(Q2)I = 0. (1.142)

1.4.5 Existence and regularity of minimizers

We want to mention two mathematical results regarding the minimization of the

functional (1.123) that will be useful in the next chapter. For details, see [2, 3, 4,

41, 83]. Assuming Dirichlet conditions at the smooth boundary ∂B, we assign the

following fields on ∂B that we may suppose continuous for our purposes

s0 : ∂B → I =

[
−1

2
, 1

]
, n0 : ∂B\S (s0) → S

2. (1.143)

Note that n0 is defined only in those points of ∂B where s0 6= 0.

The functional we want to minimize is
∫

B

(
1

3
L|∇s|2 + Ls2|∇n|2 + f(s)

)
dv, (1.144)

where f(s) is a continuous function of I = [−1
2 , 1] into R and plays the role of the

Landau-de Gennes potential (1.110).

We define the admissible pairs (s,n) for our functional as follows

A (s0,n0) = {(s,n) :B → I × S
2 : s ∈ H1 (B, I) , sn ∈ H1

(
B, R3

)
,

s0 and n0 are the traces of s and n on ∂B} .

Then, the following existence theorem holds

Theorem 1.12. Given s0, n0 and f(s) as stated above, the problem

min

{∫

B

(
1

3
L|∇s|2 + Ls2|∇n|2 + f(s)

)
dv : (s,n) ∈ A (s0,n0)

}
(1.145)

has at least one solution.
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1.4 de Gennes’ theory 33

With a slight heavier assumption on f , the following theorem dealing with the

regularity of the minimizers can be proved

Theorem 1.13. Let f be of class C 2. If (ŝ, n̂) ∈ A (s0,n0) is a pair that minimize

(1.144), then both ŝ and û = ŝ n̂ are Lipschitz continuous in any compact subset

K ⊆ B.
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2

Boundary-roughness effects

As already discussed in Chapter 1, nematic liquid crystals are fluid aggregates of

elongated molecules. When the nematic rods interact with an external surface, the

elastic strain energy induces them to align parallel to the unit normal, even if the

surface is not perfectly flat [11]. Recent experimental observations confirm that the

surface alignment of the nematic director is completely determined by the roughness-

induced surface anisotropy [54]. Further analytical calculations, performed within

the classical Frank model with unequal elastic constants, have detected the bulk

effects induced by a periodically moulded external boundary [9, 34].

A crucial effect, still related to surface roughness, escapes the framework of Frank

theory, where the only order parameter is the director. Indeed, it is physically

intuitive that nematic molecules will disorder if we force them to follow a rapidly

varying boundary condition. This surface melting was first experimentally detected

in [40, 6]. Recent experimental observations have also measured a boundary-layer

structure in the degree of orientation [84]. The surface melting has been confirmed by

approximated analytical solutions [7], numerical calculations [76, 61], and molecular

Monte Carlo simulations [27].

The combined effect of a rapidly varying director anchoring and surface melting gives

rise to an effective weak-anchoring effect that was first observed in [73]. The problem

of relating the effective anchoring extrapolation length to the microscopic roughness

parameters has been studied in several theoretical papers, all framed within the

Frank theory [37, 38, 1, 42]. This observation is of basic significance, since weak an-

choring potentials have proven to influence deeply all nematic phenomena, beginning

with Freedericksz transitions [81, 83, 63]. Indeed, several theoretical studies have

already determined the influence on anchoring energies of the presence of permanent

surface dipoles [67] or diluted surface potentials [78, 79].

In this Chapter we analyze in analytical detail the boundary-layer structure induced

by a rough surface which bounds a nematic liquid crystal. We set ourselves within

the Landau-de Gennes order-tensor theory, to be able to detect the effects on both

the director and the degree of orientation. Our results confirm the surface melting

already obtained in [7] but allow us to detect new phenomena. First, the nematic
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2.1 Equilibrium configurations 35

director steepens close to the boundary, so giving rise to an effective weak anchoring

potential, which turns out to be deeply related to the surface-melting effect, and

thus can be correctly handled only within the order-tensor theory. Furthermore,

the boundary layers display a strong dependence on the type of boundary condi-

tions imposed on the degree of orientation. Indeed, the orders of magnitude of all

the expected effects depend on whether the boundary conditions are Neumann- or

Dirichlet-like. We discuss how these effects may help in ascertaining in experiments

how the mesoscopic parameter, which measures the degree of order, interacts with

an external surface.

The Chapter is organized as follows. In §2.1 we present the model, we set the ge-

ometry of a roughly bounded sample, and derive the Euler-Lagrange partial differ-

ential equations that determine the equilibrium configurations. In §2.2 we perform

the perturbative two-scale analysis that provides all the analytical details of the

boundary-layer structure. In §2.3 we solve an effective problem, in which the rough

surface is replaced by a weak-anchoring potential. As a result, we show that a weak-

anchoring potential may be given a microscopic interpretation, and we relate the

surface extrapolation length to the microscopic roughness parameters. In §2.4 and

§2.5 we briefly extend the study to the case of strong roughness and discuss the

accuracy of the approximations we have done in modeling the boundary. In §2.6 we

draw our conclusions and discuss the validity of our geometric approximations.

2.1 Equilibrium configurations

The degree of order decrease has been recognized by many authors as a crucial

effect of surface roughness [7, 61]. We thus describe nematic configurations in the

framework of the Landau-de Gennes Q-tensor theory (see Chapter 1).

In order to keep computations simple, we adopt the one-constant approximation

for the elastic part of the free-energy functional. We stress, however, that it is

straightforward to generalize all what follows to take into account unequal material

elastic constants.

The free-energy functional will be (see Chapter 1)

Ψ(Q,∇Q) =
1

2
L|∇Q|2 + A trQ2 − B trQ3 + C trQ4 . (2.1)

The potential (2.1) strongly favors uniaxial phases, in which at least two of the three

eigenvalues of Q coincide. In fact, Q is expected to abandon uniaxiality mainly close

to director singularities [74, 16, 18]. We will not deal with any defect structure.

Thus, though the uniaxiality constraint is not essential for our purposes, we follow

the attitude of avoiding unnecessary complications and restrict our attention to
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36 2. Boundary-roughness effects

uniaxial states

Q(r) = s(r)

(
n(r) ⊗ n(r) − 1

3
I

)
. (2.2)

We stress that we are not claiming that biaxiality effects are absent close to an

external surface, since indeed the converse holds [14, 15, 17]. However, our results

show that, even in the absence of biaxiality, a surface melting exists and an effective

weak anchoring arises. A detailed treatment of the complete order-tensor theory

would yield more precise quantitative estimates of the effects we will determine

anyhow.

The scalar s ∈
[
−1

2 , 1
]

and the unit vector n in (2.2) are, respectively, the degree

of orientation and the director . With the aid of (2.2), the potential (2.1) can be

written as

fel[s,n] = L
(
s2|∇n|2 + 1

3 |∇s|2
)

and fLdG(s) = 2
3As2 − 2

9B s3 + 2
9C s4 . (2.3)

When A ≤ B2/(12C), the absolute minimum of the function fLdG(s) occurs at the

preferred degree of orientation

spr :=
3B +

√
9B2 − 96AC

8C
> 0 . (2.4)

In order to gain physical interpretation of the results, we also introduce the nematic

coherence length ξ and the dimensionless (positive) parameter ω, defined as

ξ2 :=
9L

C
and ω2 :=

6

C
(sprB − 4A) . (2.5)

The nematic coherence length compares the strength of the elastic and thermody-

namic contributions to the free-energy functional. It characterizes the size of the

domains where the degree of orientation may abandon its preferred value spr. The

number ω depends on the depth of the potential well associated with spr. Indeed, it

is defined in such a way that f ′′
LdG(spr) = Lω2/ξ2.

By using (2.4),(2.5) we write the bulk free-energy density fb := fel + fLdG as

fb[s,n]

L
= s2|∇n|2+

1

3
|∇s|2+

1

2ξ2

(
s4 − 4

3
s3

(
2spr −

ω2

spr

)
+ 2s2(s2

pr − ω2)

)
. (2.6)

2.1.1 Modeling a rough surface

We aim at analyzing the effects that a rough boundary induces in a nematic liquid

crystal. Once again, we try to keep our analysis as simple as possible, while still

catching the essential features. We thus follow, e.g., [37] in modeling roughness
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by imposing a sinusoidally perturbed homeotropic anchoring condition on a flat

surface (see Figure 2.1.1). The amplitude and the wavelength characterizing the

perturbation will be the crucial parameters in our results.

There are two nontrivial simplifications in our geometric setting. First, we are as-

suming that the boundary is perfectly sinusoidal, while a physical surface will clearly

exhibit a whole roughness spectrum. Second, we are replacing an undulating bound-

ary by an undulating boundary condition on a flat surface. We postpone until Section

§2.5 a more detailed discussion on the validity of these simplifying assumptions. We

anticipate, however, that none of them introduces qualitative errors. More precisely,

the latter amounts to performing an expansion in the roughness amplitude and keep-

ing the leading order in the expansion. As for the treatment of the whole roughness

spectrum, it turns out that at the same order of approximation one is allowed to

treat a single wavelength at a time and eventually add up all the contributions.

We focus attention on a thin boundary layer, attached to the external surface. Con-

sequently, we disregard the detailed structure of the bulk equilibrium configuration,

which will enter our results only as asymptotic outer solution for the surface bound-

ary layer. We introduce a Cartesian frame of reference {ex, ey, ez} and assume that

the nematic spreads in the whole half-space B = {z ≥ 0}. We further simplify the

geometry by assuming that n(r) = sin θ(r) ex + cos θ(r) ez and that the asymptotic

bulk configuration depends only on z:

θ(r) ≈ θb(z) as z → +∞ . (2.7)

A crucial role in the developments below is played by m := θ′b(0), the derivative of

the asymptotic solution at z = 0, which has the physical dimensions of an inverse

length. It represents the effect of any tilted bulk field that competes with the surface

anchoring and may well be an electric or magnetic coherence length. Throughout

our calculations we will assume that m−1 is much greater than both the nematic

coherence length and the roughness wavelength. In the presence of an external field

so strong that m−1 becomes of the order of, or even smaller than, the microscopic

lengths above, the following asymptotic expansions fail. In particular, in this ex-

treme regime the surface roughness effects may invade the whole bulk and cannot

be replaced by an effective weak-anchoring potential.

In the presence of strong homeotropic anchoring on a flat surface, the boundary

condition to be imposed on the director would be θ(flat)(x, y, 0) = 0 . On the contrary,

we will require

θ(x, y, 0) = ∆ cos
x

η
. (2.8)

The boundary condition (2.8) mimics the coarseness of the external surface by in-

troducing two new parameters: the (dimensionless) roughness amplitude ∆ and the
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z

xz = 0

η

∆
B

Figure 2.1: Geometric modeling of a rough surface. The physical surface oscillates with a

characteristic wavelength η. The homeotropic anchoring at the oscillating boundary induces

an oscillation of amplitude ∆ in the boundary director. The bulk volume B is the grey

region. Besides the microscopic roughness wavelength η, the two-scale analysis performed

below is governed as well by the microscopic nematic coherence length ξ, introduced in (2.5).

roughness wavelength η (see Figure 2.1.1). We remark that the oscillation rate in-

creases as η → 0+, while all roughness effects are expected to vanish in the limit

∆ → 0+. The requirements (2.7),(2.8) imply that the free-energy minimizer will not

exhibit any dependence on the transverse y-coordinate, so that we will henceforth

restrict our attention to the dependence on the coordinates (x, z).

It is more complex to ascertain the correct type of boundary conditions which are

to be imposed on the degree of orientation s. From the mathematical point of

view, it would be natural to imitate the (Dirichlet) strong anchoring imposed on

the director and thus set s(x, y, 0) to be equal to some fixed boundary value s̃.

Nevertheless, while it is well established that we can induce an easy axis for the

director on an external boundary, it is questionable whether we may fix the value

of a mesoscopic parameter, which measures the degree of order in a distribution.

From the physical point of view, stress-free (Neumann) boundary conditions on the

degree of orientation deserve attention as well. In this latter case, we simply leave

to the thermodynamic potential (2.1) the assignment of inducing the preferred value

spr in the bulk (z → ∞), while we perform no boundary action on the degree of

orientation. To be safe, both possibilities (Dirichlet and Neumann) will be analyzed

in §2.2.

2.1.2 Euler-Lagrange equations

Once we consider that |∇n|2 = |∇θ|2, it is easy to derive the Euler-Lagrange partial

differential equations associated with the functional (2.6). They read

s2∆θ + 2 s∇s · ∇θ = 0 and ∆s − 3 s |∇θ|2 − 3
σ(s)

ξ2
= 0 , (2.9)
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where

σ(s) := s(s − spr)

(
s − spr +

ω2

spr

)
. (2.10)

Since the boundary conditions (2.8) are x-periodic, with a period of 2πη, we look for

solutions of (2.9) in C2
2πη (the space of C2-functions, 2πη-periodic in the x-direction).

To complete the differential system (2.8), in §2.2.2 we will require






θ(x, 0) = ∆ cos
x

η
∂s

∂z
(x, 0) = 0

and

{
θ(x, z) ≈ θb(z)

s(x, z) ≈ spr

as z → ∞ (2.11)

while in §2.2.3 we will choose





θ(x, 0) = ∆ cos

x

η

s(x, 0) = s̃
and

{
θ(x, z) ≈ θb(z)

s(x, z) ≈ spr

as z → ∞ (2.12)

2.2 Two-scale analysis

Before proceeding with the perturbation analysis of the differential equations, we

state them in dimensionless form. It will turn out that the correct scaling is ob-

tained by measuring lengths in η-units, so that we introduce the new dimensionless

coordinates x̄ = x/η, z̄ = z/η and define the dimensionless parameter ε = ξ/η.

Equations (2.9) thus become

s2∆θ + 2s∇s · ∇θ = 0 and ε2∆s − 3ε2s |∇θ|2 − 3σ(s) = 0 , (2.13)

where both the gradient and the Laplacian are now to be intended with respect to the

scaled variables. The nematic coherence length is usually much smaller than all other

characteristic lengths. Consequently, we will look for uniformly asymptotic solutions

to (2.13), by treating ε as a small parameter. In this limit, (2.13)2 is singular, so

that a regular asymptotic expansion would not provide a uniform approximation

of the solution. Indeed, the small parameter ε multiplies the highest derivative, so

that we may expect the solution to have a steep behavior in a layer of thickness

δ (to be determined), close to the boundary z = 0. We refer the reader to the

books [50, 10, 62, 77] for the details of the singular perturbation theory we will

apply henceforth and, in particular, for the technique of the two-scale method which

directly yields a uniform approximation of the solution.

A standard dominant balance argument (that requires us to introduce a stretched

variable Z = z̄/δ) allows us to recognize that the boundary layer thickness is δ = ε.
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We then introduce the fast variable Z = z̄/ε. The two-scale chain rule requires us

to replace ∂z̄ by
(
∂z̄ + ε−1∂Z

)
, and equations (2.13) take the form (when s 6= 0)

s
(
ε2θ,x̄x̄ + ε2θ,z̄z̄ + 2εθ,z̄Z + θ,ZZ

)
+ 2ε2s,x̄θ,x̄ + 2(εs,z̄ + s,Z)(εθ,z̄ + θ,Z) = 0

(2.14)

ε2s,x̄x̄ + ε2s,z̄z̄ + 2εs,z̄Z + s,ZZ − 3s
[
ε2(θ,x̄)2 + (εθ,z̄ + θ,Z)2

]
− 3σ(s) = 0

(2.15)

where a comma denotes differentiation with respect to the shown variable. In agree-

ment with the two-scale method, θ and s are now to be intended as θ(x̄, z̄, Z) and

s(x̄, z̄, Z). In other words, θ and s are functions of x̄, z̄, and Z, which are to be

regarded as independent variables. It will be only at the very end of our calculations

that we will recast the connection between z̄ and Z: Z = z̄/ε. We seek solutions

which may be given the formal expansions

θ(x̄, z̄, Z) = θ0(x̄, z̄, Z) + εθ1(x̄, z̄, Z) + ε2θ2(x̄, z̄, Z) + O(ε3) (2.16)

s(x̄, z̄, Z) = s0(x̄, z̄, Z) + εs1(x̄, z̄, Z) + ε2s2(x̄, z̄, Z) + O(ε3) . (2.17)

If we insert (2.16)-(2.17) into (2.14)-(2.15), we obtain the following differential equa-

tions to O (1), O (ε), and O
(
ε2
)
:

{
1
s0

(
s2
0θ0,Z

)
,Z

= 0

s0,ZZ − 3s0(θ0,Z)2 − 3σ(s0) = 0
(2.18)

{
1
s0

(
s2
0θ1,Z

)
,Z

+ 1
s1

(
s2
1θ0,Z

)
,Z

= −2 (s0θ0,Z),z̄ − 2s0,Zθ0,z̄

s1,ZZ − 6s0θ0,Zθ1,Z − 3s1

(
σ′(s0) + (θ0,Z)2

)
= 6s0θ0,Zθ0,z̄ − 2s0,z̄Z

(2.19)






1
s0

(s2
0θ2,Z),Z + 1

s2
(s2

2θ0,Z),Z = − 1
s1

(s2
1θ1,Z),Z − 1

s0
(s2

0θ0,z̄),z̄ − 1
s0

(s2
0θ0,x̄),x̄

− 2 (s0θ1,Z),z̄ − 2 (s1θ0,Z),z̄ − 2s1,Zθ0,z̄ − 2s0,Zθ1,z̄

s2,ZZ − 3s2

[
σ′(s0) + (θ0,Z)2

]
− 6s0θ0,Zθ2,Z = 3

2s2
1σ

′′(s0)

+ 3s0

[
(θ0,z̄ + θ1,Z)2 + (θ0,x)2

]

+ 6θ0,Z (s1θ1,Z + s1θ0,z̄ + s0θ1,z̄) − 2s1,z̄Z − s0,z̄z̄ − s0,xx .

(2.20)

Analogous equations can be easily derived at any desired order. For any n ≥ 1,

the differential system obtained at O (εn) is linear in the unknowns θn,sn and may

be solved analytically. By virtue of the multiscale method, we find the correct

dependence on z̄, Z by requiring that all sn, θn are uniformly bounded as ε → 0+

for expanding intervals of the type 0 ≤ Z ≤ Z∗/ε, for a suitable positive constant

Z∗. In most practical cases this requirement is equivalent to asking for the removal

of secular terms (i.e., terms that diverge as Z → +∞).
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2.2 Two-scale analysis 41

2.2.1 Preliminary remarks about the method

If y(x; ε) is the continuous exact solution of a differential equation that contains a

small parameter ε, and

ŷ(k)(x; ε) = y0(x) + εy1(x) + · · · + εkyk(x) (2.21)

is the regular expansion of y(x; ε) up to the kth-order, we define the error as

Rk(x; ε) = y(x; ε) − ŷ(k)(x; ε). (2.22)

A natural requirement for an asymptotic solution to be satisfactory at the order n

in an interval x ∈ [a, b] is that for any k ≤ n and for sufficiently small ε, there exists

a constant Mk, independent of ε, such that

sup
x∈[a,b]

|Rk(x; ε)| ≤ εk+1 Mk (2.23)

and we say that the error is uniformly of order at least k + 1 as ε → 0. A necessary

condition for this is that every yk(x), k > 0, be bounded in x ∈ [a, b], in fact

|εk yk(x)| = |ŷ(k)(x; ε) − ŷ(k−1)(x; ε)| ≤ |ŷ(k)(x; ε) − y(x; ε)| + |y(x; ε) − ŷ(k−1)(x; ε)|
= |Rk(x; ε)| + |Rk−1(x; ε)| ≤ εk (Mk−1 + εMk) .

In other words, it is expected that the (k + 1)-term of the expansion provides the

principal part of the error Rk(x; ε). This is exactly the condition that we try to

fulfill when using the two-scale method. It is not guaranteed in advance that this

will produce a valid asymptotic solution, but the plan we are adopting is the most

likely to lead to the desired result.

When the problem is singular like in our case, two (or more) length scales must be

introduced, one is the fast variable Z (inner variable in the terminology of boundary

layer theory) and the other is the slow variable z̄ (outer variable in boundary layer

theory); the two are linked by the stretching relation Z = z̄/ε in our case. The fast

variable describes the rapid variations of the solution and therefore is the one that

varies in the boundary layer, while the slow variable varies only outside the boundary

layer, in the so called outer region. Of the two only Z can grow indefinitely as

ε → 0 since the boundary layer solution has to match the solution valid in the outer

region and therefore must reach values for which z̄ = εZ is finite as ε → 0. The

condition on the boundedness of the expansion terms then tells us that θk(x̄, z̄, Z)

and sk(x̄, z̄, Z) must be uniformly bounded in Z for expanding intervals [0, Z∗/ε],
where Z∗ is a constant. The right dependence of the solution on the slow variable z̄

is then retrieved by the use of this condition.

In practice, there is not a unique way to satisfy the above procedure, so we will
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42 2. Boundary-roughness effects

adopt the more restrictive rule [50]: the arbitrary functions of z̄ are determined by

trying to reduce the contribution of the next terms in the expansion, so we require

the term |yk+1(z̄, Z)| to be as small as we can over the length scales we are using.

Otherwise stated, we choose the arbitrary functions of the slow variable z̄ in such a

way that the C0-norm of the term yk (supposed continuous)

‖yk‖C0 = sup {|yk(εZ,Z)| : Z ∈ [0, Z∗/ε]} (2.24)

is the smallest possible. In particular this means that we are trying to avoid sit-

uations where εk yk(z̄, z̄/ε) is of order εk−1 since in such a case the perturbation

procedure fails. For instance, a term εk yk(z̄, Z) = εk A(z̄)Z e−Z is bounded, but re-

placing the stretching relation Z = z̄/ε yields εk yk(z̄, z̄/ε) = εk−1 A(z̄) z̄ e−z̄/ε which

is of O
(
εk−1

)
. If the asymptotic expansion is working properly, the error at the step

k is ruled by the term yk+1 and the above criterion can be rephrased informally as

“try to minimize the error in the approximation”. Of course, there is no a-priori

evidence that this rule can always be applied, nonetheless it allows in most practical

cases to resolve the arbitrariness in z̄ even when no secular terms are given.

2.2.2 Free surface degree of orientation

In terms of the scaled variables, the boundary conditions (2.11) require

{
θ(x̄, 0) = ∆ cos x̄

s,z̄(x, 0) = 0
and

{
θ(x̄, z̄) ≈ θb(ηz̄)

s(x̄, z̄) ≈ spr

when z̄ � 1 . (2.25)

The leading solutions in expansions (2.16),(2.17) are

s0(x, z) = spr and θ0(x, z) = m z + ∆e−z/η cos
x

η
, (2.26)

where m := θ′b(0). Higher-order asymptotic solutions are gathered by means of

laborious but straightforward calculations. After recasting the solutions in terms of

the dimensional variables x = η x̄ and z = η z̄, we find

s(x, z) = spr −
sprξ

2

ω2

(
m2 − 2m ∆

η
e−z/η cos

x

η
+

∆2

η2
e−2z/η

)

+
2spr ξ3

√
3 ω3

e−
√

3ωz/ξ

(
∆2

η3
− m ∆

η2
cos

x

η

)
+ O

(
ε4
)

, (2.27)

θ(x, z) = m z + ∆ e−z/η cos
x

η
+

ξ2

ω2

(
2m ∆2

η

(
1 − e−2z/η

)

− ∆3

2 η2

(
e−z/η − e−3z/η

)
cos

x

η
− 2m2 ∆

η
z e−z/η cos

x

η

)
+ O

(
ε4
)

. (2.28)
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2.2 Two-scale analysis 43

The above expansions have been carried out up to the first nontrivial correction

of the 0th-order approximation. Indeed, all calculations must be pushed to O
(
ε3
)

, since an internal ξ-layer is necessary to satisfy the boundary condition (2.11) in

z = 0. This layer is of O
(
ε3
)

because in the Neumann case the boundary condition

(2.11) concerns the first derivative of s, instead of the degree of orientation itself.

We remark that the solutions (2.27)-(2.28) are coherently ordered for every fixed

value of η 6= 0. However, they are not uniformly ordered when η ∈ (0, η̄]; namely

we do not have a uniform solution if η is allowed to become of order ξ or, still

worse, tend to zero. In other words, the above solutions remain valid as η → 0+ if

and only if ξ = o (η). The main properties of the equilibrium configurations in the

mathematically appealing but physically uncommon case in which η is of the order

of, or even smaller than, ξ will be presented in a following Section §2.4.

Two-scale calculations

Zeroth-order solution. It is easily seen that the following zeroth-order solutions

satisfy the leading equations in expansions (2.16),(2.17), when Neumann condition

for s is assumed at the surface z̄ = 0.

s0(x̄, z̄, Z) = spr and θ0(x̄, z̄, Z) = A0(x̄, z̄). (2.29)

Here A0(x̄, z̄) is unknown and will be determined hereafter.

First-order solution. The O (ε) equations then reads

θ1,ZZ = 0, s1,ZZ − 3ω2s1 = 0 (2.30)

whose general solutions are

θ1(x̄, z̄, Z) = A1(x̄, z̄) + B1(x̄, z̄)Z, (2.31)

s1(x̄, z̄, Z) = C1(x̄, z̄) e−
√

3 ωZ + D1(x̄, z̄) e
√

3 ωZ . (2.32)

We need now to remove secular terms, so that we must impose D1(x̄, z̄) ≡ 0 and

B1(x̄, z̄) ≡ 0. Boundary conditions on s1 further require C1(x̄, z̄) ≡ 0. Therefore we

have

θ1(x̄, z̄, Z) = A1(x̄, z̄) and s1(x̄, z̄, Z) = 0. (2.33)

Second-order solution. The O
(
ε2
)

equations are

θ2,ZZ + ∆
2
A0 = 0 (2.34)

s2,ZZ − 3ω2s2 − 3spr|∇2
A0|2 = 0 (2.35)
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44 2. Boundary-roughness effects

where ∆
2

and ∇
2

are respectively the laplacian and the gradient with respect to the

variables (x̄, z̄): ∆
2
A0 = A0,x̄x̄ + A0,z̄z̄ and ∇

2
A0 = (A0,x̄, A0,z̄).

The general solution of (2.34) is

θ2(x̄, z̄, Z) = A2(x̄, z̄) + B2(x̄, z̄)Z − 1

2
∆

2
A0(x̄, z̄)Z2. (2.36)

The removal of secular terms thus yields B2(x̄, z̄) ≡ 0 and the equation for A0(x̄, z̄):

∆
2
A0 = 0. The expression of A0(x̄, z̄) (and θ2) is then found by considering the

boundary conditions that θ0 must satisfy. We find:

A0(x̄, z̄) = mz̄ + ∆e−z̄ cos x̄ and θ2(x̄, z̄, Z) = A2(x̄, z̄). (2.37)

Equation (2.35) can now be solved to give

s2(x̄, z̄, Z) = C2(x̄, z̄) e−
√

3 ωZ − spr

ω2

(
m2 + ∆2 e−2z̄ + 2m ∆ e−z̄ cos x̄

)
, (2.38)

where we have already removed secular terms.

We now want to impose boundary conditions on s. The Neumann condition at z̄ = 0

requires a little of attention, we examine the procedure in detail.

In the framework of the two-scale analysis, the condition
∂s(x̄, z̄)

∂z̄
= 0 on z̄ = 0,

becomes
∂

∂z̄
s(x̄, z̄, Z) +

1

ε

∂

∂Z
s(x̄, z̄, Z) = 0 on z̄ = Z = 0 (2.39)

and therefore involves different orders of approximation. If we insert (2.16)-(2.17)

in the previous equation, we obtain the following conditions on the boundary z̄ =

Z = 0, k ≥ 0:

∂s0

∂Z
= 0

∂s0

∂z̄
+

∂s1

∂Z
= 0

∂s1

∂z̄
+

∂s2

∂Z
= 0

· · ·
∂sk

∂z̄
+

∂sk+1

∂Z
= 0.

The first two conditions are already fulfilled by the expressions of s0 and s1, while

the third provides the condition

C2(x̄, 0) = 0 (2.40)

that will be later used.
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2.2 Two-scale analysis 45

Third-order solution. The O
(
ε3
)

equations are

θ3,ZZ + ∆
2
A1 − 2

√
3 ω

spr
e−

√
3 ωZ C2

(
m − ∆ e−z̄ cos x̄

)
= 0 (2.41)

s3,ZZ − 3ω2s3 − 2
√

3ω e−
√

3 ωZC2,z̄ − 6spr∇2
A1 · ∇2

A0 = 0. (2.42)

The general solution of (2.41) is

θ3(x̄, z̄, Z) = A3(x̄, z̄) + B3(x̄, z̄)Z +
2e−

√
3 ωZ

√
3 ωspr

C2(x̄, z̄)
(
m − ∆ e−z̄ cos x̄

)

− 1

2
∆

2
A1(x̄, z̄)Z2. (2.43)

Again, to avoid infinite terms as Z → +∞ we set B3(x̄, z̄) ≡ 0 and ∆
2
A1 = 0, which

in turn gives A1(x̄, z̄) ≡ 0 since A1 has to verify homogeneous boundary conditions.

We have,

θ3(x̄, z̄, Z) = A3(x̄, z̄) +
2 e−

√
3 ωZ

√
3ωspr

C2(x̄, z̄)
(
m − ∆e−z̄ cos x̄

)
. (2.44)

The general solution of (2.42) now is

s3(x̄, z̄, Z) = C3(x̄, z̄) e−
√

3 ωZ − e−
√

3 ωZ

2
√

3ω

∂C2(x̄, z̄)

∂z̄
− Z e−

√
3 ωZ ∂C2(x̄, z̄)

∂z̄
. (2.45)

According to the two-scale method, we chose C2(x̄, z̄) in order to minimize |s3(x̄, z̄, Z)|
uniformly in Z (see Section 2.2.1). This implies that ∂C2(x̄,z̄)

∂z̄ = 0 and therefore C2

is a function only of x̄: C2(x̄, z̄) = C2(x̄). The condition (2.40) then enable us to

conclude C2(x̄, z̄) ≡ 0 and it is easily obtained

θ3(x̄, z̄, Z) = A3(x̄, z̄) and s3(x̄, z̄, Z) = C3(x̄, z̄) e−
√

3 ωZ . (2.46)

Fourth-order solution. To determine the function A2(x̄, z̄) which is of interests

for us, we need to push the perturbation expansion up to the fourth order. We do

not enter here into the full details, since calculations are lengthy and tedious, but

straightforward.

The O
(
ε4
)

equation for θ is

θ4,ZZ + ∆
2
A2 − 2

√
3 ω

spr
e−

√
3 ωZC3

(
m − ∆ e−z̄ cos x̄

)

− 4∆

ω2
e−z̄
( (

m2 + ∆2e−2z̄
)
cos x̄ − 2m∆e−z̄

)
= 0 (2.47)
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46 2. Boundary-roughness effects

whose general solution is

θ4(x̄, z̄, Z) = A4(x̄, z̄) + B4(x̄, z̄)Z +
2e−

√
3 ωZ

√
3 ωspr

C3(x̄, z̄)
(
m − ∆ e−z̄ cos x̄

)

−
(

1

2
∆

2
A2(x̄, z̄) − 2∆

ω2
e−z̄
( (

m2 + ∆2e−2z̄
)
cos x̄ − 2m∆e−z̄

))
Z2.

(2.48)

Therefore we must choose B4(x̄, z̄) ≡ 0 and A2 satisfies the equation

∆
2
A2(x̄, z̄) =

4∆

ω2
e−z̄
( (

m2 + ∆2e−2z̄
)
cos x̄ − 2m∆e−z̄

)
(2.49)

that can be solved by using standard methods (see remark 2.1) to yield

A2(x̄, z̄) = A20 + A21e
−z̄ cos x̄

− 2m∆2

ω2
e−2z̄ +

∆

ω2
e−z̄

(
e−2z̄ ∆2

2
− 2m2 z̄

)
cos x̄. (2.50)

The constants A20 and A21 are then determined imposing the boundary condition

θ2(x̄, 0, 0) = 0. This yield

A20 =
2m∆2

ω2
and A22 = − ∆3

2ω2
. (2.51)

Calculations for s4(x̄, z̄, Z), similar to those performed in the discussion of equation

(2.42), show that C3(x̄, z̄) needs to be function of x̄ only: C3(x̄, z̄) = C3(x̄). The

boundary conditions then requires that at z̄ = Z = 0 it must be

∂s2

∂z̄
+

∂s3

∂Z
= 0 (2.52)

from which the expression of C3(x̄) is gathered

C3(x̄) =
2spr∆√

3ω3
(∆ − m cos x̄) . (2.53)

Remark 2.1. Equation (2.49) is of the type

u,yy + u,xx =
(
α e−y + β e−3y

)
cosx + γ e−2y. (2.54)

We look for regular solutions which are 2π-periodic along the x-axis and satisfy the conditions

(a) u(x, 0) = 0 and (b) lim
y→+∞

u(x, y) = 0. (2.55)

Regularity theorems for elliptic equations (see [39]), assure that the solution is analytic, so

that it can be expanded in Fourier series in the x variable and no question on the convergence
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of the series arises. Moreover, the series can be differentiated term by term. Therefore, we

seek a solution of the type

u(x, y) = a0(y) +

+∞∑

k=1

ak(y) cos kx, (2.56)

where only cosine terms have been considered due to symmetry reasons. In fact, the bound-

ary conditions, the domain and equation (2.54) are invariant under the change of variable

x → −x. Therefore, the solution is expected to share the same symmetry, i.e., it has to be

even. Insertion of (2.56) into (2.54) yields

a′′

0(y) +

+∞∑

k=1

(
a′′

k(y) − k2ak(y)
)
cos kx =

(
α e−y + β e−3y

)
cosx + γ e−2y. (2.57)

Taking each contribution separately, we get the equations

a′′

0(y) = γ e−2y (2.58)

a′′

1(y) − a1(y) = α e−y + β e−3y (2.59)

a′′

k(y) − k2ak(y) = 0, k ≥ 2, (2.60)

whose solutions, satisfying the boundary condition (2.55b), are

a0(y) = C0 +
γ

4
e−2y (2.61)

a1(y) = C1 e−y − α

4
e−y(1 + 2y) +

β

8
e−3y (2.62)

ak(y) = Ck e−ky, k ≥ 2. (2.63)

The constants Ck can be determined using the boundary condition (2.55a), in particular

Ck = 0 for k ≥ 2.

Surface melting

We can highlight three different contributions in the degree of orientation (2.27).

First, we notice a uniform decrease in the degree of order, equal to −sprm
2ξ2/ω2.

This disordering effect is triggered by the θ-derivative m and was certainly to be

expected. In fact, a glance to the free-energy functional (2.6) suffices to show that

a reduction in s decreases the free energy whenever the gradient of the director is

not null. We then find two boundary layers. The former, of thickness η and O
(
ε2
)
,

is a further reduction of the degree of orientation due to the boundary roughness,

which induces a director variation in the x-direction. An internal boundary layer,

of thickness ξ and order O
(
ε3
)
, is finally needed in order to cancel the normal

derivative of s at the external surface. If we take into account all the contributions,

the mean surface degree of orientation, defined as the x-average of s(x, 0), turns out

to be

〈s(x, 0)〉x = spr

[
1 − m2ξ2

ω2
− ∆2ξ2

ω2η2
+

2∆2ξ3

√
3ω3η3

]
+ O

(
ε4
)

. (2.64)
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0 ξ
η

1 2 3
0.6

0.7

spr

z/η

〈s(x, z)〉x

Figure 2.2: Boundary layers in the mean degree of orientation 〈s(x, z)〉x when ξ = 0.25η,

spr = 0.8, ω = 0.6, m = 0.1/η, and ∆ = 1.5. The plot exhibits the presence of two boundary

layers, the internal one being required by the free boundary condition applied on s.

Figure 2.2 evidences the reported behaviour of the mean degree of orientation as a

function of the distance from the surface.

Effective surface angle

The tilt angle θ exhibits a boundary-layer structure as well. Equation (2.28) shows

that such a layer is of O
(
ε2
)

and thickness η. It gives rise to an interesting effective

misalignment of the surface director. Indeed, if we allow z � η in (2.28) we find

that

θ(x, z) ≈ θb(z) =
2m ξ2∆2

ηω2
+ m z as z � η . (2.65)

The asymptotic approximation (2.65) shows that an experimental observation, per-

formed sufficiently far from the external plate (with respect to the microscopic scale

η), would detect an effective tilt angle θb, whose value at the plate is different from

zero, since

θb(0) =
2m ξ2∆2

ηω2
. (2.66)

Thus, a coarse observation of the nematic configuration measures a surface tilt angle

slightly different from the homeotropic prescription θsurf = 0. Figure 2.3 evidences

this effect. In the next Section we will analyze in more detail the result (2.66). Then

we will show how it matches the predictions of an effective weak-anchoring potential.

We remark that the tilt angle does not exhibit any further boundary layer at the

smaller scale ξ.
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0 ξ
η

1 2 3
0◦

10◦

20◦

θb(0)

θb(z)

z/η

〈θ(x, z)〉x

Figure 2.3: Boundary layer in the mean tilt angle 〈θ(x, z)〉x when ξ = 0.25η, spr = 0.8,

ω = 0.6, m = 0.1/η, and ∆ = 1.5. The dashed line corresponds to the asymptotic, linear

approximation θb(z).

2.2.3 Fixed surface degree of orientation

The perturbative analysis of the differential equations (2.9), with the Dirichlet

boundary conditions (2.12), would be unnecessarily entangled because of the non-

linearity of the thermodynamic potential (2.10). In fact, in this case only implicit

solutions for s0(x, z, Z) can be gathered. In order to pursue our analysis, and still

catch the essential features of the solutions, we replace the function σ in (2.9) by

its linear approximation σ1(s) = ω2(s − spr). This is tantamount to replacing the

Landau-de Gennes potential in (2.3) by a tangent quadratic well, still centered in spr.

Such an approximation is certainly well justified deep in the nematic phase, when

the isotropic state s = 0 becomes unstable, and the second well of the Landau-de

Gennes potential can be neglected.

The asymptotic properties of the solutions in this case depend critically on the value

s̃ forced on the surface. If s̃ 6= spr, the boundary layer induced by the Dirichlet con-

dition dominates over the roughness effect. Indeed, the leading asymptotic solutions

are given by

s(x, z) = spr − (spr − s̃) e−
√

3 ωz/ξ

−
√

3 (spr − s̃)
ξ

ω
e−

√
3 ωz/ξ

[
∆2

4η

(
1 − e−2z/η

)
+

3

2
m2 z

− 3m∆
(
1 − e−z/η

)
cos

x

η
+

∆2

2η

(
1 − e−2z/η

)
cos

2x

η

]
+ O

(
ε2
)

(2.67)
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θ(x, z) = m z + ∆e−z/η cos
x

η

+
ξ√
3 ω

[
h

(
z

ξ

)
− h(0)

](
m − ∆

η
e−z/η cos

x

η

)
+ O

(
ε2
)

, (2.68)

where

h(ζ) = log
[
spr − (spr − s̃) e−

√
3 ω ζ

]
− (spr − s̃) e−

√
3 ω ζ

spr − (spr − s̃) e−
√

3 ω ζ
(2.69)

determines the tilt angle variation within the boundary layer. The bulk-asymptotic

tilt angle is then given by

θ(x, z) ≈ θb(z) =
m ξ√
3 ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+ m z as z � η . (2.70)

We remark that, when s̃ 6= spr, the leading contribution to θb(0) is independent of

∆ and thus does not depend on the surface roughness. Furthermore, the effective

surface tilt angle depends linearly on ξ, which makes it significantly larger than

the prediction (2.66), derived with Neumann-like boundary conditions on s, which

possesses an extra ξ/η (small) factor. Finally, we remark the fact that θb(0) shares

the sign of m if and only if s̃ < spr. We will return below to the physical origin and

implications of this result.

When the induced degree of orientation s̃ does exactly coincide with spr, all calcu-

lations simplify, since h(ζ) ≡ log spr, and all first-order correction in (2.68) vanish.

We therefore push our perturbation analysis and obtain

s(x, z) = spr −
sprξ

2

ω2

[
m2 +

∆2

η2
e−2z/η − 2m ∆

η
e−z/η cos

x

η

− e−
√

3 ωz/ξ

(
m2 +

∆2

η2
− 2m ∆

η
cos

x

η

)]
+ O

(
ε3
)

(2.71)

θ(x, z) = m z + ∆ e−z/η cos
x

η
+

ξ2

ω2

(
2m ∆2

η

(
1 − e−2z/η

)

− ∆3

2 η2

(
e−z/η − e−3z/η

)
cos

x

η
− 2m2 ∆

η
z e−z/η cos

x

η

)
+ O

(
ε3
)

. (2.72)

Equation (2.72) allows us to compute the asymptotic tilt angle θb when s̃ = spr.

In fact, once we drop all exponentially-decaying terms in (2.72), we arrive at the

interesting result that θb(z) does exactly coincide with (2.65), that is, with the

expression we derived with a Neumann-like boundary condition on the degree of

orientation. In fact, the complete expression (2.72) for the tilt angle θ(x, z) coincides

with (2.28) up to O
(
ε3
)
. Thus, any observation on the tilt angle is not able to

distinguish among a free and a fixed boundary condition on the degree of orientation,
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as long as the imposed value s̃ coincides with the preferred value spr. This similarity

between the Neumann and Dirichlet cases can be pursued further. Indeed, we can

determine the O
(
ε2
)
-contributions in (2.67)-(2.68) also when s̃ 6= spr. If we then

use them to compute the O
(
ε2
)
-correction to the asymptotic tilt angle (2.70), we

arrive at the following expression, valid at O
(
ε2
)

for any value of s̃:

θ(x, z) ≈ θb(z) =

[
m ξ√
3 ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+

2m ξ2∆2

ηω2

]
+m z as z � η, (2.73)

which yields

θb(0) =
m ξ√
3 ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+

2m ξ2∆2

ηω2
. (2.74)

The O
(
ε2
)
-contribution to the effective surface angle θb(0) is thus fully a roughness

effect and does not depend at all on the type of boundary conditions imposed on s.

On the other hand, (2.74) confirms that the effective surface angle possesses also an

O (ε)-term when Dirichlet conditions are imposed on the degree of orientation, and

s̃ 6= spr.

Figure 2.4 shows how the degree of orientation varies within the boundary layer as

s̃ is fixed above, equal to, or below spr. A double boundary-layer structure emerges.

All plots exhibit a decrease of s in a region of characteristic size η: this effect comes

from the O
(
ε2
)
-contribution. A similar surface melting was already presented and

discussed in Figure 2.2. Close to the boundary, the O (1)-term proportional to

(s̃ − spr) e−
√

3 ωz/ξ settles the desired boundary value of s in a thin boundary layer

of characteristic size ξ.

Two-scale calculations

We report here the main steps of the calculations performed under the Dirichlet

condition for s at z̄ = 0. We will not describe all the details since they follow the

same idea outlined in §2.2.2.

Zeroth-order solution. When Dirichlet condition for s is assumed at the surface

z̄ = 0, the zeroth-order solutions for (2.16),(2.17) are

s0(x̄, z̄, Z) = spr + B0(x̄, z̄)e−
√

3 ωZ and θ0(x̄, z̄, Z) = A0(x̄, z̄). (2.75)

First order solution. The O (ε) equation for s(x̄, z̄, Z) then reads

s1,ZZ − 3ω2s1 = 2
√

3 ω e−
√

3 ωZ ∂B0

∂z̄
(2.76)
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0 ξ
η

1 2 3

0.6

spr

1.0

z/η

〈s(x, z)〉x

Figure 2.4: Boundary layers in the mean degree of orientation 〈s(x, z)〉x, when ξ = 0.25η,

spr = 0.8, ω = 0.6, m = 0.1η, and ∆ = 1.5, when Dirichlet-like boundary conditions are

applied on the degree of orientation. The boundary degree of orientation s̃ is respectively

equal to 1 (top), spr (middle), and 0.6 (bottom).

whose general solution is (neglecting the term e
√

3 ωZ)

s1(x̄, z̄, Z) = B1(x̄, z̄)e−
√

3 ωZ − e−
√

3 ωZ ∂B0(x̄, z̄)

∂z̄

(
Z +

1

2
√

3 ω

)
. (2.77)

By the use of the non-secularity rule (as expressed in Section 2.2.1) and the boundary

condition at z̄ = 0, we get B0(x̄, z̄) = −(spr − s̃).

The correspondent equation for θ1(x̄, z̄, Z) is

(
spr − (spr − s̃)e−

√
3 ωZ

)
θ1,ZZ + 2

√
3 ω(spr − s̃) e−

√
3 ωZ (θ1,Z + A0,z̄) = 0 (2.78)

which does not allow the determination of A0(x̄, z̄) (so we must proceed to the next

order) but can be solved. Finally, we find

s1(x̄, z̄, Z) = B1(x̄, z̄) e−
√

3 ωZ (2.79)

θ1(x̄, z̄, Z) = A1(x̄, z̄) +
h(Z)√

3ω

∂A0(x̄, z̄)

∂z̄
, (2.80)

where h(Z) = log
(
spr − (spr − s̃) e−

√
3 ωZ

)
− (spr − s̃) e−

√
3 ωZ

spr − (spr − s̃) e−
√

3 ωZ
.

Second order solution. We will limit ourselves to the evaluation of the terms

A0, A1 and B1. We need therefore to go to the O
(
ε2
)

terms of the expansion. Here

calculations get much more involved and the philosophy underneath them is very

much the same as in the preceding Section, so we will only try to sketch the main
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ideas.

The equations are:

(
spr − e−

√
3 ωZ (spr − s̃)

)
θ2,ZZ + 2

√
3 ω(spr − s̃) e−

√
3 ωZ θ2,Z

+
(
spr − e−

√
3 ωZ (spr − s̃)

)
A0,x̄x̄ +

(
spr + 3e−

√
3 ωZ (spr − s̃)

)
A0,z̄z̄

+ 2e−
√

3 ωZ(spr − s̃) log
(
spr − e−

√
3 ωZ (spr − s̃)

)
A0,z̄z̄

+ 2
√

3 ω(spr − s̃) e−
√

3 ωZ A1,z̄

−
2
√

3 ωs3
pr e−

√
3 ωZ

(
spr − e−

√
3 ωZ (spr − s̃)

)3 B1 A0,z̄ = 0 (2.81)

s2,ZZ − 3ω2s2 − 3
(
spr − e−

√
3 ωZ (spr − s̃)

)
A2

0,x̄

− 3s4
pr(

spr − e−
√

3 ωZ (spr − s̃)
)3 A2

0,z − 2
√

3 ω e−
√

3 ωZ B1,z̄ = 0. (2.82)

Equation (2.81) can be solved and its expression involves the dilogarithm special

function

Li2(ζ) = −
∫ ζ

0

log(1 − t)

t
dt, (2.83)

which is real for real argument ζ ≤ 1 and complex for ζ > 1. If we study the

asymptotic behavior of θ2(x̄, z̄, Z) and use the fact that, for Z → +∞,

Li2

(
spr

spr − s̃
e
√

3 ωZ

)
∼ −3ω2

2
Z2 −

√
3 ω log

(
− spr

spr − s̃

)
Z , (2.84)

which follows from the expression [55, 5]

Li2(ζ) + Li2

(
1

ζ

)
= −π2

6
− 1

2
log2(−ζ) (2.85)

when we put ζ =
spr

(spr−s̃)e
√

3 ωZ and consider only the dominant infinite terms as

Z → +∞; we arrive at the equation that A0(x̄, z̄) must satisfy to avoid secularity:

∆
2
A0 = 0. Therefore we have

A0(x̄, z̄) = mz̄ + ∆ e−z̄ cos x̄. (2.86)

Note that all the imaginary parts that appear in the above calculations cancel out

to yield a pure real final result for θ2(x̄, z̄, Z), as expected.
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We can now turn the attention to equation (2.82), find its solution s2(x̄, z̄, Z) and

then study how s2(x̄, z̄, Z) behaves asymptotically at Z → +∞. It is then found for

B1(x̄, z̄)

B1(x̄, z̄) =

√
3 (spr − s̃)

ω

(
−3

2
m2z̄ − ∆2

4
(1 − e−2z̄)

+ 3m ∆(1 − e−z̄) cos x̄ − ∆2

2
(1 − e−2z̄) cos 2x̄

)
. (2.87)

Third order solution. We still need to determine the function A1, so we have

to consider also the O
(
ε3
)

equation for θ. As we are not interested in the actual

solutions θ3, but we need only to prevent secular terms in its expression, we can try

to study the asymptotic behavior of the solution by means of a direct analysis of the

equation. This latest is very intricate, but it is of the form
(
spr − (spr − s̃)e−

√
3 ωZ

)
θ3,ZZ(x̄, z̄, Z) = α(x̄, z̄) + f(x̄, z̄, Z), (2.88)

where α(x̄, z̄) and f(x̄, z̄, Z) are regular functions and f = O
(
e−

√
3 ωZ

)
as Z → +∞.

We can find the term A1 without solving the equation, if we use the following ad-hoc

lemma, where the variable x stands for our fast variable Z.

Lemma 2.2. Given the equation
(
1 + e−x

)
y′′ = α + f(x) where f(x) is continu-

ous in [a,+∞), a ≥ 0 and such that lim
x→+∞

f(x) = 0,

(i) if α 6= 0, then y(x) ∼ 1
2α x2 for x → +∞, independently on the given initial

conditions

(ii) if α = 0 and f(x) = O (e−x), then the differential equation admits at least one

solution y(x) which is bounded in [a,+∞).

Proof. (i) Since α 6= 0, 1
2α x2 and its derivative go to infinity as x → +∞. This allows the

use of L’Hôpital’s theorem (even if no conditions are imposed on y(x) as x → +∞, see [71])

to evaluate the limit

lim
x→+∞

y(x)
1
2α x2

= lim
x→+∞

y′(x)

α x
= lim

x→+∞

y′′(x)

α
= lim

x→+∞

α + f(x)

α (1 + e−x)
= 1. (2.89)

(ii) Note that f(x) = O (e−x) guarantees that

∫ +∞

a

|f(x)| dx < +∞.

We can write

y′(x) = y′(a) +

∫ x

a

f(t)

1 + e−t
dt. (2.90)

Since ∣∣∣∣
∫ +∞

a

f(t)

1 + e−t
dt

∣∣∣∣ ≤
∫ +∞

a

|f(t)|
|1 + e−t| dt ≤

∫ +∞

a

|f(t)| dt < +∞, (2.91)
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it is possible then to choose y′(a) = −
∫ +∞

a

f(t)

1 + e−t
dt, so that

y′(x) = −
∫ +∞

x

f(t)

1 + e−t
dt, (2.92)

from which it follows lim
x→+∞

y′(x) = 0.

Moreover

∫ +∞

a

|y′(x)| dx < +∞, in fact if we compare the order of infinity of y′(x) with

1

xγ
, γ > 1, we have (using again L’Hôpital’s theorem)

lim
x→+∞

y′(x)
1

xγ

= lim
x→+∞

y′′(x)

−γ 1
xγ+1

= lim
x→+∞

−γ xγ+1 f(x)

1 + e−x
= 0. (2.93)

Due to the continuity of y(x) in [a, +∞), it enough to show that y(x) has finite limit as

x → +∞, to prove its boundedness.

lim
x→+∞

|y(x)| = lim
x→+∞

∣∣∣∣ y(a) +

∫ x

a

y′(t) dt

∣∣∣∣ ≤ |y(a)| + lim
x→+∞

∫ x

a

|y′(t)| dt < +∞. (2.94)

�

Lemma (2.2) says that we necessarily have to impose α = 0 to prevent the solution

y(x) from being secular. This condition provides the equation that allows the de-

termination of A1(x̄, z̄). Again it is found that ∆
2
A1 = 0. Matching the boundary

conditions, we finally have

A1(x̄, z̄) =
h(0)√

3 ω

(
−m + ∆ e−z̄ cos x̄

)
. (2.95)

2.3 Effective weak anchoring

Once the boundary layer effects fade away, the main macroscopic effect of a rough

surface on the director orientation is to allow for an effective surface tilt angle θb(0),

which apparently violates the homeotropic prescription θ(0) = 0 (see (2.66) and

(2.74)). It appears then natural to check whether the same macroscopic effect may

be modeled through a weak anchoring potential, acting on a smooth surface. In this

Section we pursue this similarity and we derive a relation connecting the microscopic

roughness parameters with a macroscopic anchoring strength.

To solve the weak-anchoring problem, we consider a nematic liquid crystal which

still spreads in the half-space B = {z ≥ 0}. To better compare our results with

classical weak-anchoring models, we settle within Frank’s director theory, and thus
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look for the equilibrium distribution that minimizes the free-energy functional

F [n] := L

∫

B

∣∣∇n
∣∣2 dv + W

∫

∂B
fw[n] da . (2.96)

The bulk free-energy density in the functional (2.96) can be derived from its order-

tensor theory counterpart by setting s ≡ 1 in (2.6). The anchoring potential fw is

required to attain its minimum at the homeotropic anchoring n
∣∣
∂B = ez, while W is

the anchoring strength.

We look again for equilibrium distributions of the type n(z) = sin θ(z) ex+cos θ(z) ez.

Thus, the free-energy functional (2.96) per unit transverse area can be written as

G[θ] := L

∫
θ′2(z) dz + W fw

(
θ(0)

)
, (2.97)

where we assume f ′
w(0) = 0 and f ′′

w(0) > 0, in order to guarantee the homeotropic

preference. The minimizers of (2.97) satisfy the trivial Euler-Lagrange equation

θ′′ = 0 and the boundary condition

Lθ′(0) − Wf ′
w

(
θ(0)

)
= 0 . (2.98)

When the anchoring strength W is large enough, the boundary condition (2.98)

requires θ(0) to be small. When this is the case, a Taylor expansion in (2.98)

supplies

θ(0) ≈ Lm

Wf ′′
w(0)

= ζ m , (2.99)

In (2.99) we have restored the notation m = θ′(0), to better compare this estimate

with our preceding results, and introduced the surface extrapolation length

ζ :=
L

Wf ′′
w(0)

, (2.100)

a quantity that compares the relative strengths of the elastic and anchoring poten-

tials.

The comparison between (2.99) and our results (2.66)-(2.74) relates the surface ex-

trapolation length to the microscopic roughness parameters and/or the surface value

of the degree of orientation. To further pursue this similarity we need to consider

separately the different anchorings that may be applied to the degree of orientation.

? When s is free to choose its boundary value, (2.66) shows that the surface

extrapolation length is given by

ζ

ξ
=

2∆2

ω2

ξ

η
+ O

(
ξ2

η2

)
. (2.101)
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Thus, the anchoring strength increases when either the roughness amplitude

∆ decreases (towards a smooth surface) or the roughness wavelength increases.

An estimate of the order of magnitude of the effective roughness wavelength can

be obtained by assuming typical values for the quantities involved in (2.101).

Indeed, if we assume ζ ≈ ξ, ∆ ≈ 1, and ω ≈ 1
2 , we arrive at η ≈ 10ξ, which

models a roughness wavelength in the hundredths of molecular lengths.

? When the boundary conditions fix the value of the degree of orientation at the

surface, (2.74) yields

ζ

ξ
=

1√
3ω

(
log

spr

s̃
+

spr − s̃

s̃

)
+

2∆2

ω2

ξ

η
+ O

(
ξ2

η2

)
. (2.102)

Equation (2.102) shows that the surface extrapolation length includes two

quite different contributions. The former depends on the difference between

the boundary and the preferred values of the degree of orientation (s̃ and spr,

respectively), while the latter depends on the surface roughness and indeed

coincides with (2.101). However, (2.102) may lose sense when s̃ > spr. Indeed,

in this case ζ may become negative, so providing an inverse weak-anchoring

effect. The physical origin of this odd result may be easily understood if we

again resort to the s2|∇θ|2-term in the free-energy density. By virtue of that

term, the tilt angle prefers to limit its spatial variations in regions of higher s.

If we force in the surface a higher degree of orientation than the bulk value,

the tilt angle will flatten close to the surface, thus exhibiting the opposite

behaviour with respect to that shown in Figure 2.3. Equation (2.102) shows

that this inverse effect may occur whenever

s̃ − spr

spr
&

√
3∆2

ω

ξ

η
+ O

(
ξ2

η2

)
. (2.103)

If we again replace the estimates above for ∆, ω, η, we arrive at the result that

a fixed degree of orientation is able to completely hide the roughness-induced

effective weak anchoring whenever s̃ exceeds spr by the 10% of the preferred

value spr itself.

2.4 Strong roughness limit

We now briefly discuss the limit in which the roughness wavelength η is much shorter

than the nematic coherence length ξ. We assume therefore that ε = ξ/η � 1. This

limit is unphysical since the coherence length is usually much smaller than all other

characteristic lengths, but it is however mathematically appealing.
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s
spr

εs′

Figure 2.5: Example of the phase portrait of (2.108). In our case the positive branch has

physical meaning. In particular the graph shows that when s = 0 (at the roughed surface)

the derivative s′ must be different from zero.

In agreement with the previous discussion, when the limiting surface is strongly

grooved, the degree of order decreases near the boundary and we may expect that

in our extreme limit the liquid crystal reaches a complete melting to the isotropic

phase at z = 0. We will therefore assume that s(x, 0) = 0. It is then reasonable

that the whole director variation will be limited in the region where s is close to

zero, in fact in the functional (2.6) no energy cost is associated with the director

distortions when s = 0. In our strong roughness limit the angle ϑ is allowed to be

discontinuous (i.e. |∇ϑ| diverges to infinity) where s = 0, so that ϑ reaches its bulk

value with a jump right at the surface, while the degree of order grows slowly to the

bulk value (spr). We can then neglect the term s2|∇n|2 in the functional (2.6). In

fact, in the region where |∇n| is different from zero, s is close to zero. On the other

hand, when s 6= 0 the director distribution is nearly uniform. The approximate

equilibrium distribution is therefore given by the critical points of

∫ +∞

0

(
|∇s|2 +

3 g(s)

2ε2

)
dz̄ (2.104)

where g(s) is the normalized Landau-de Gennes potential reported here for ease of

reference

g(s) = s4 − 4

3
s3

(
2spr −

ω2

spr

)
+ 2s2(s2

pr − ω2). (2.105)

We consider here for simplicity only the expression averaged along the x-direction,

i.e. s(x̄, z̄) = s(z̄).

It is clear, since the integrand in (2.104) does not explicitly depend on z̄, that the

following expression is conserved (it is a “constant of motion” in the language of
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ξ
η

0 20 40 60 80

spr

z/η

〈s(x, z)〉x

Figure 2.6: Numerical solution of (2.108) with ε = 10, spr = 0.8 and ω = 0.6.

mechanics)
(
ε s′
)2 − 3

2
g(s) = H0 (2.106)

where the prime denotes differentiation with respect to the z-variable and the con-

stant H0 can be determined through the boundary conditions. We require

{
s′(z̄) ≈ 0

s(z̄) ≈ spr

as z̄ → +∞ (2.107)

which yields H0 = −3
2g(spr).

A first integration is therefore given by (see Figure 2.5)

(
ε s′
)2

=
3

2

(
g(s) − g(spr)

)
. (2.108)

This equation can be solved numerically, with the additional condition that s(0) = 0.

The shape of the solution for ε = 10, spr = 0.8 and ω = 0.6 is given in Figure 2.6,

to be compared with Figure 2.2.

As expected, since ξ is large, not much energy cost is associated with s 6= spr over

quite long length-scales. Indeed, s reaches the bulk value (in our example) at ap-

proximately z = 60η.

2.5 Approximations in the boundary conditions

In this Section, we want to discuss the validity of two nontrivial simplifications we

have introduced in our geometric setting. First, we have assumed that the boundary
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60 2. Boundary-roughness effects

is perfectly sinusoidal, while a physical surface will exhibit a whole roughness spec-

trum. Second, we have replaced an undulating boundary by an undulating boundary

condition on a flat surface.

2.5.1 Roughness spectrum

Throughout the Chapter we have studied the bulk effects induced by the presence

of a perfectly sinusoidal boundary. In real physical systems, however, the boundary

roughness is mostly random, and a whole spectrum of roughness wavelengths is to

be expected. In order to estimate whether the effects we have determined may

be enforced or hidden by the interference between different wavelengths we briefly

report here the results that may be obtained by replacing the boundary condition

(2.8) by the more general

θ(x, y, 0) = ∆1 cos
x

η1
+ ∆2 cos

(
x

η2
+ φ2

)
, (2.109)

with η1/η2 6∈ {1
2 , 1, 2}, in order to avoid resonance effects.

We here simply report how the main results are to be modified when stress-free

(Neumann) boundary conditions are applied on the degree of orientation. A brief

detail of the calculations is reported in the following Subsection.

The first effect we have studied is the surface melting induced by the boundary

roughness. Once we average along the x-direction and compute the solutions at the

effective boundary z = 0, (2.64) is to be replaced by

〈s(x, 0)〉(2)x = spr

[
1 − m2ξ2

ω2
− ξ2

ω2

(
∆2

1

η2
1

+
∆2

2

η2
2

)
+

2ξ3

√
3 ω3

(
∆2

1

η3
1

+
∆2

2

η3
2

)]
+ O

(
ε4
)

.

(2.110)

Expression (2.66) for the effective surface angle becomes

θ
(2)
b (0) =

2m ξ2

ω2

(
∆2

1

η1
+

∆2
2

η2

)
. (2.111)

Equations (2.110)-(2.111) show that the presence of more than one characteristic

wavelength does not yield any dramatic result in the averaged quantities that in-

teract with the bulk. In fact, they simply add their contributions, weighted by the

roughness amplitudes. The situation is clearly more complex if we aim at computing

the exact solutions within the boundary layers. In particular, the x-periodicity is

lost as soon as the roughness wavelengths are not commensurable.
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Two-scale calculations

Since we need to go to the second order to actually consider the boundary condition

(2.109) (boundary conditions are imposed on A0(x, z), whose equation appears in

the O
(
ξ2
)

expression), the solutions up to O (ξ) are identical to those of §2.2.2 and

indeed also the subsequent calculus is very similar. Following the usual technique,

we obtain the expressions below, to be compared with those found in §2.2.2.
θ0(x, z, Z) = mz + ∆1e

−z/η1 cos x
η1

+ ∆2e
−z/η2 cos

(
x
η2

+ φ2

)
(2.112)

s0(x̄, z̄, Z) = spr (2.113)

θ1(x, z, Z) = 0 (2.114)

s1(x̄, z̄, Z) = 0 (2.115)

θ2(x, z, Z) = A2(x, z) (2.116)

s2(x̄, z̄, Z) = C2(x, z) e−
√

3 ωZ − spr

ω2

[
m2 − 2m ∆1

η1
e−z/η1 cos x

η1

− 2m ∆2

η2
e−z/η2 cos

(
x
η2

+ φ
)

+
∆2

1

η2
1

e−2∆2
1/η2

1 +
∆2

2

η2
2

e−2∆2
2/η2

2

+ 2∆1∆2

η1η2
e−(z/η1+z/η2) cos

(
x
η2

− x
η1

+ φ
)]

(2.117)

θ3(x, z, Z) = A3(x, z) (2.118)

s3(x̄, z̄, Z) = C3(x, z) e−
√

3 ωZ . (2.119)

In accordance with the two-scale method, equations at higher orders, not reported

here, allow us to determine the conditions that C2(x, z) and A2(x, z) must satisfy.

Likewise the single wavelength case, it is found C2(x, z) = 0, while differences begin

to arise when we write the equation for A2(x, z). Non-secularity condition on O
(
ξ4
)

equation requires:

∆
2
A2 + 8m

ω2

(
∆2

1

η3
1

e−2z/η1 +
∆2

2

η3
2

e−2z/η2

)

− 4∆1

η1ω2 e−z/η1

(
m2

η1
+

∆2
1

η3
1

e−2z/η1 + 2
∆2

2

η3
2

e−2z/η2

)
cos x

η1

− 4∆2

η2ω2 e−z/η2

(
m2

η2
+

∆2
2

η3
2

e−2z/η2 + 2
∆2

1

η3
1

e−2z/η1

)
cos
(

x
η2

+ φ
)

+ 8m∆1∆2

η1η2ω2 e−z/η1−z/η2

(
1
η1

+ 1
η2

)
cos
(

x
η2

− x
η1

+ φ
)

− 4∆2
1∆2

ω2η2
1η2

2

e−2z/η1−z/η2 cos
(

x
η2

− 2 x
η1

+ φ
)

− 4∆1∆2
2

ω2η2
1η2

2

e−z/η1−2z/η2 cos
(
2 x

η2
− x

η1
+ φ

)
= 0. (2.120)
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62 2. Boundary-roughness effects

A solution to (2.120) is found by direct computation. When boundary conditions

are taken into account, one finally has the sought expression for A2(x, z):

A2(x, z) =
2m∆2

1

ω2η1

(
1 − e

− 2z
η1

)
+

2m∆2
2

ω2η2

(
1 − e

− 2z
η2

)

+∆1

ω2 e
− z

η1

(
−2m2 z

η1
+

2e
−

2z
η2 ∆2

2

η2(η1+η2) −
2∆2

2

η2(η1+η2)
+

e
−

2z
η1 ∆2

1

2η2
1

− ∆2
1

2η2
1

)
cos x

η1

+∆2

ω2 e
− z

η2

(

−2m2 z
η2

+
2e

−
2z
η1 ∆2

1

η1(η1+η2) −
2∆2

1

η1(η1+η2)
+

e
−

2z
η2 ∆2

2

2η2
2

− ∆2
2

2η2
2

)

cos
(

x
η2

+ φ
)

+2m∆1∆2

ω2

(
e
−| z

η1
−

z
η2
|−e

−
z

η1
−

z
η2

η1
+ e

−| z
η1

−
z

η2
|−e

−
z

η1
−

z
η2

η2

)
cos
(

x
η2

− x
η1

+ φ
)

− ∆2∆2
1

2ω2η1η2

(
e
−
∣∣∣ 2z

η1
− z

η2

∣∣∣ − e
− 2z

η1
− z

η2

)
cos
(

x
η2

− 2x
η1

+ φ
)

− ∆2
2∆1

2ω2η1η2

(
e
−
∣∣∣ z

η1
− 2z

η2

∣∣∣ − e
− z

η1
− 2z

η2

)
cos
(

x
η1

− 2x
η2

− 2φ
)

. (2.121)

For generic roughness, we can avoid the particular cases of resonances, i.e., η1/η2 6∈
{1

2 , 1, 2}, so that only the first two terms of A2(x, z) will contribute to the averaged

expression along x. It is then readily found the effective surface angle (2.111).

Similarly, the O
(
ξ4
)

equation for s4(x, z, Z) yields the condition on C3(x, z):
∂C3

∂z
= 0.

We can therefore determine C3, since it is independent of the variable z, simply by

imposing the boundary conditions,

C3(x, z) = 2spr√
3ω3

(
∆2

1

η3
1

+
∆2

2

η3
2

− m∆1

η2
1

cos x
η1

− m∆2

η2
2

cos
(

x
η2

+ φ
)

+ ∆2∆1 (η1+η2)
η2
1
η2
2

cos
(

x
η2

− x
η1

+ φ
))

. (2.122)

The two-scale approximation for the degree of order and its averaged value at the

surface (2.110) are then readily obtained.

2.5.2 Modeling an undulating boundary

In §2.1.1 we have modeled a homeotropic boundary condition imposed on an undu-

lating surface through an oscillating boundary condition imposed on a flat surface.

In this Section we analyze the validity of such an approximation. In order to avoid

unnecessarily lengthy calculations, we perform the present check within the Frank

approximation, that is, by assuming that the nematic coherence length ξ is much
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smaller than all other lengths involved in the problem. When this is the case, the

degree of orientation is constrained to the value spr that minimizes the Landau-de

Gennes potential, the Euler-Lagrange equation (2.9)1 becomes Laplace’s equation,

and thus the tilt angle θ is harmonic.

We consider the region A = {(x, z) : z ≥ δη sin x} and look for a x-periodic harmonic

function θ : A → R (with x-period η) that satisfies the boundary conditions

θ(x, δη sin x
η ) = arctan

(
δ cos x

η

)
, θ(x, z) ≈ θ̃(z) as z → +∞ , (2.123)

for all values of x. The boundary condition (2.123)1 guarantees that the unit vector

n = sin θ ex + cos θ ez is homeotropically anchored to the physical boundary, while

(2.123)2 guarantees that the bulk configuration depends only on the z-coordinate.

Let us expand the tilt angle in power series of the amplitude coefficient δ:

θ(x, z) =

∞∑

n=0

θn(x, z) δn . (2.124)

We next Fourier-expand all functions θn along the periodic direction

θn(x, z) =

∞∑

k=0

an,k(z) cos
kx

η
+

∞∑

k=1

bn,k(z) sin
kx

η
. (2.125)

The Laplace equation implies then

θn(x, z) =

∞∑

k=0

αn,k e−kz/η cos
kx

η
+

∞∑

k=1

βn,ke
−kz/η sin

kx

η
, (2.126)

where the coefficients {αn,k, βn,k} can be determined by requiring (2.123)1 to hold.

In particular, we expand both sides of (2.123)1 in Taylor series with respect to δ and

require that the two expressions match at each order.

Let us now compute the value the tilt angle attains at the (horizontal) height z = δη,

which we aim to consider as effective flat boundary (see Figure 2.1.1). We obtain

θ(x, δη) =
(
δ − δ2

)
cos

x

η
+

δ2

2
sin

2x

η
+ O(δ3) . (2.127)

In general, it can be shown that the nth coefficient θn in expansion (2.124) contains

only Fourier components up to k ≤ n. Thus, the boundary condition (2.8) used in the

text is exact up to O(δ2). Furthermore, the roughness amplitude ∆ simply coincides

with δ, the (dimensionless) ratio between the height of the sinusoidal undulations

and the roughness wavelength.

electronic-Liquid Crystal Dissertations - June 01,  2007

http://www.e-lc.org/dissertations/docs/2007_05_31_11_51_18



64 2. Boundary-roughness effects

2.6 Discussion

We have examined both the boundary layer structure and the bulk effects of a rough

surface bounding a nematic liquid crystal. Our main results may be summarized as

follows.

? The roughness of the surface has been modeled by an oscillating anchoring

condition, characterized by an oscillation amplitude ∆ and a wavelength η.

Figs. 2.2 and 2.4 show that the rough boundary induces a partial melting

in a neighborhood (of size η) of the external boundary. When Neumann-like

boundary conditions are imposed on the degree of orientation, (2.64) quantifies

the mean degree of order at the boundary. By contrast, were s to be forced to

a prescribed value s̃ on the surface, (2.67) and (2.71) show that the boundary

condition induces a thin boundary layer, determined by the nematic coherence

length ξ.

? Once the degree of orientation decreases, the spatial variations of the tilt angle

become cheaper, and thus θ is keen to steepen close to the external boundary.

Figure 2.3 illustrates this effect. As a consequence, the effective boundary tilt

angle θb(0), extrapolated from the asymptotic outer solution θb(z), becomes

different from the null homeotropic prescription (see (2.66) and (2.74)). In §2.3
we have shown that a similar effective anchoring breaking takes place when a

weak-anchoring potential is assumed on a smooth surface (see (2.100) for the

characteristic surface extrapolation length). The comparison between (2.99)

and (2.66)-(2.74) allows one to relate the surface extrapolation length to the

microscopic roughness parameters and/or the surface value of the degree of

orientation (see (2.102) and (2.103)).

? When multiple wavelengths are considered in the boundary roughness, the

overall effect is the sum of the contributions given by the single wavelengths

separately. This fact is described in Section §2.5.
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3

Induced biaxiality

Within the Landau-de Gennes theory, the ground state of nematic liquid crystals may

be either isotropic or uniaxial, depending on the external temperature. However,

biaxial domains have been predicted and observed, especially close to defects and

external boundaries. Schopohl and Sluckin [74] analyzed in detail the biaxial core of

a +1
2 nematic disclination. More recent studies show that a biaxial cloud surrounds

most nematic defects [16]. Both analytic [70, 18] and numeric [28, 29] asymptotical

descriptions of biaxial defect cores have been derived. Other examples of defect-

induced biaxiality involve integer-charged disclinations [20, 53, 52] and cylindrical

inclusions [59]. The onset of surface biaxiality is closely related to the presence of a

symmetry-breaking special direction, which coincides with the surface normal [14].

Indeed, biaxiality has been predicted close to both external boundaries [58, 46] and

internal isotropic-nematic interfaces [25, 68].

In this Chapter we show that biaxiality effects are closely related to, but not exclu-

sively confined to, the examples above. In fact, within any spatially-varying director

distribution, the director gradient itself breaks uniaxial symmetry about the direc-

tor. We analyse in detail the structure of the elastic free energy density and come

up to the result that, given a director distribution, it is possible to predict the onset

of biaxiality, to determine the direction of the secondary optic axis and to estimate

the intensity of biaxiality effects. We then apply our general considerations to some

specific examples, both within the bulk and close to an external boundary. We re-

mark that we are not dealing with intrinsically biaxial nematic liquid crystals, that

is, systems in which the ground state itself becomes biaxial. Such systems, first

observed by Yu and Saupe [85], deserve a different treatment [21, 80], since in them

uniaxial symmetry is broken already at a molecular level.

This Chapter is organized as follows. In Sections 3.1 and 3.2 we quickly review the

order-tensor theory and the free energy density we aim at minimizing. In Section

3.3 we derive and describe our main result, predicting a possible onset of biaxiality

whenever the director is not uniform. In the following Section 3.4 we apply the

preceding results to some specific examples. Section 3.5 analyzes the case of induced

biaxiality close to a limiting surface. In Section 3.6 we collect and discuss our main
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66 3. Induced biaxiality

results.

3.1 Order tensor

The present Chapter is devoted to the study of biaxial nematics. In this general case,

as explained in Chapter 1, the eigenvalues of the order tensor Q are all different and

we can identify the director n as the eigenvector whose eigenvalue has a different

sign with respect to the other two.

This definition may induce an artificial director discontinuity whenever the inter-

mediate eigenvalue crosses 0. In turn, it yields an operative definition that works

well when the order tensor is possibly biaxial, but however close to being uniaxial.

Once we have introduced the director, once again we define the degree of orientation

s = 3
2µn, where µn is the eigenvalue associated with n. The other two eigenvalues

µ± can be finally written in terms of the degree of biaxiality b: λ± = −1
3 s± b. As a

result we obtain

Qbia = s

(
n⊗ n− 1

3
I

)
+ b (e+ ⊗ e+ − e− ⊗ e−) , (3.1)

which is analogous to (1.16) of Chapter 1. Here, we have written s and b instead

of s1 and s2, as we did in (1.16), since in the nearly uniaxial case s and b are more

commonly used when one is willing to stress the physical meanings of the coefficients,

i.e., s is degree of order and b stands for the degree of biaxiality. Indeed, when b = 0,

expression (3.1) reduces itself to the uniaxial order tensor.

The sign of b is unessential, since it only involves an exchange between e+ and e−.

The degree of biaxiality does always satisfy |b| ≤ 1
3 |s|. Indeed, when |b| = 1

3 |s| one

of the eigenvalues vanishes, and greater biaxiality values would in fact announce an

abrupt change in the director (and in the degree of orientation as well).

3.2 Free energy functional

Equilibrium states of nematic liquid crystals are identified as extremals of the free-

energy functional whose density, in the absence of external fields, comprises two

terms

Ψ(Q,∇Q) = Ψel(Q,∇Q) + ΨLdG(Q) . (3.2)

Though all the calculations we report could be repeated in a more general framework,

we will adopt the 1-constant approximation for the elastic contribution Ψel

Ψel(Q,∇Q) =
L

2
|∇Q|2 , (3.3)
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3.3 Bulk biaxiality 67

where L is an average elastic constant.

The Landau-de Gennes potential ΨLdG (see Section §1.4.2) is a temperature-dependent

thermodynamic contribution that takes into account the material tendency to spon-

taneously arrange in ordered or disordered states:

ΨLdG(Q) = A trQ2 − B trQ3 + C trQ4 . (3.4)

The material parameter C must be positive to keep the free-energy functional

bounded from below. The potential (3.4) depends only on the eigenvalues of Q,

and penalizes biaxial states. Insertion of (3.1) into (3.4) returns

ΨLdG(s, b) =
2

9

(
Cs4 − Bs3 + 3As2

)

+
2

9

(
6Cs2 + 9Bs + 9A

)
b2 + 2Cb4 . (3.5)

Let α = 3A/(Cs2
pr). The absolute minimum of ΨLdG is located at the uniaxial

configuration (spr > 0, b = 0), provided

α ∈ [−2, 1] and B = 2
3 Cspr(α + 2) . (3.6)

When looking for minimizers of the free energy functional, we take into account

that Landau-de Gennes’ contribution usually dominates the elastic one. This ap-

proximation holds as long as we do not get too close to a nematic defect. Indeed,

experimental observations confirm that neither s nor b depart easily from their pre-

ferred values (spr, 0).

We then envisage a two-step minimization. In the first step (s, b) are constrained

to their optimal values. Minimization proceeds exactly as in Frank’s director theory

and yields an optimal distribution n(r). In the second step, we fix the director

distribution and determine the perturbative corrections it induces in the optimal

values of the scalar order parameters. As a result, we prove that non-uniform director

configurations may induce a nonzero degree of biaxiality, and a reduction in the

degree of orientation. As a by-product we determine how a non-zero director gradient

breaks the local axial symmetry induced by the director, and which direction is

chosen by most molecules (among those orthogonal to n).

3.3 Bulk biaxiality

We assume that a specific director distribution n(r) has been determined by mini-

mizing Frank’s free-energy functional, constrained by suitable boundary conditions.
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The director distribution may also take into account the effects of any possible ex-

ternal field.

We now prove the following decomposition for the director gradient

∇n = λ2 e2 ⊗ e2 + λ3 e3 ⊗ e3 +
(
curln ∧ n

)
⊗ n

+ 1
2 (n · curln)W(n) , (3.7)

where W(n) denotes the skew tensor associated with n, that is the tensor such that

W(n)v = n ∧ v for any v. We remind that, given two vectors u, v, the tensor

product (u⊗ v) is defined as the second order tensor such that

(u ⊗ v)a = (v · a)u for any vector a . (3.8)

Furthermore, {λ2, λ3}, {e2, e3} are respectively the eigenvalues and eigenvectors of

the symmetric part of G = ∇n− (∇n)n ⊗ n, the third eigenvector of symG being

n, with null eigenvalue. We remark that

divn = tr∇n = λ2 + λ3 . (3.9)

Proof of (3.7). Let sym and skw be the symmetric and antisymmetric part of a tensor:

symA = 1
2

(
A + AT

)
(3.10)

skw A = 1
2

(
A − AT

)
. (3.11)

In order to characterize the tensor ∇n we begin by noticing that

(∇n)T n = 1
2∇
(
n · n

)
= 0 , (3.12)

since n is a unit vector. Furthermore, we recall that by definition

(skw∇n)v = 1
2 curln ∧ v. (3.13)

Thus,

(∇n)n =
(
sym∇n + skw∇n

)
n

= 1
2

(
(∇n) + (∇n)T

)
n + 1

2 curln ∧ n

= 1
2 (∇n)n + 1

2 curln ∧ n , (3.14)

where we have used (3.13) and (3.12). We can finally write

(∇n)n = curln ∧ n. (3.15)

If a, b and c are three arbitrary vectors, we remind the vector identity

(a ∧ b) ∧ c = (a · c)b − (b · c)a, (3.16)
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which can also be written using the skew tensor W(a ∧ b) associated with a ∧ b,

W(a ∧ b) = b ⊗ a − a⊗ b. (3.17)

Let

G = ∇n − (∇n)n ⊗ n. (3.18)

For any vector v,

(skwG)v = 1
2 (G − GT )v

= 1
2

[
∇n − (∇n)n ⊗ n − (∇n)T + n ⊗ (∇n)n

]
v

=
[
skw(∇n) + 1

2

(
n ⊗ (∇n)n − (∇n)n ⊗ n

)]
v

= 1
2 curln ∧ v + 1

2W
(
(∇n)n ∧ n

)
v

= 1
2 curln ∧ v + 1

2

(
(∇n)n ∧ n

)
∧ v

= 1
2

(
curln + (curln ∧ n) ∧ n

)
∧ v

= 1
2

(
curln + (n · curln)n− curln

)
∧ v

= 1
2 (n · curln)n ∧ v

= 1
2 (n · curln)W(n)v, (3.19)

where W
(
(∇n)n ∧ n

)
is the skew tensor associated with the vector (∇n)n ∧ n.

Thus,

∇n = G + (∇n)n ⊗ n = symG + skwG + (∇n)n ⊗ n

= symG + 1
2 (n · curln)W(n) +

(
curln ∧ n

)
⊗ n

= λ2e2 ⊗ e2 + λ3e3 ⊗ e3 + 1
2 (n · curln)W(n) +

(
curln ∧ n

)
⊗ n , (3.20)

where {λ2, λ3} and {e2, e3} are respectively the eigenvalues and eigenvectors of symG. The

eigenvectors {e2, e3} are orthogonal to n, since (3.19) implies

(symG)n = Gn− (skw G)n

=
(
∇n − (∇n)n ⊗ n

)
n− 1

2 (n · curln)W(n)n = 0 . (3.21)

�

Let S be the symmetric tensor S = (∇n) (∇n)T . By virtue of (3.12) the director

n is an eigenvector of S (with null eigenvalue). We can now give one of the main

results of this Chapter, stated in form of theorem for clarity.

Theorem 3.1. The elastic free energy density (3.3) may be given the form

Ψel = L
[

1
3 |∇s|2 + |∇b|2 + s2 |∇n|2 + b2

(
|∇n|2 + 4|(∇e+)Te−|2

)

− 2sb
(
e+ · Se+ − e− · Se−

)]
. (3.22)
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Proof. Let us differentiate equation (3.1). We obtain

∇Q =
(
n⊗ n − 1

3I
)
⊗∇s + s (∇n � n + n ⊗∇n) + (e+ ⊗ e+ − e− ⊗ e−) ⊗∇b

+ b
(
∇e+ � e+ + e+ ⊗∇e+ −∇e− � e− − e− ⊗∇e−

)
, (3.23)

where, given a second-order tensor L and a vector u, (L � u) is defined as the third-order

tensor such that

(L � u)a = La ⊗ u for any vector a . (3.24)

When computing the square norm of ∇Q, we can make extensive use of the property (3.12)

and also take into account that

u · v = 0 =⇒ (∇u)T v = −(∇v)T u . (3.25)

There are many possible ways to calculate |∇Q|2. Among them, the one we will give here is

not the most elegant, but it has the major advantage of being elementary. Indeed, it makes

use of the Cartesian components of ∇Q, in the same spirit of the proof of (1.123).

Qij,k =
(
ninj − 1

3δij

)
s,k + s (ni,knj + ninj,k) +

(
e+
i e+

j − e−i e−j
)
b,k

+ b
(
e+
i,ke+

j + e+
i e+

j,k − e−i,ke−j − e−i e−j,k

)
, (3.26)

where, to simplify notation, we have here used a superscript + and − to identify the com-

ponents of e+ and e−, respectively.

The property (3.12) can greatly simplify the calculation of |∇Q|2. For an arbitrary unit

vector v, it reads

vj,k vj = 0. (3.27)

In the following calculation, we suppress the sign of summation for ease of reading and use

the convention that for each term a summation is to be intended only on those indexes

explicitly appearing in the term

|∇Q|2 =
∑

ijk

Qij,k Qij,k

= s2
,k − 1

3
s2

,k − 1

3
s2

,k +
3

9
s2

,k − 1

3
s,k b,k +

1

3
s,k b,k

+ s2 n2
i,k + s b nj e+

j,k e+
i ni,k − s b nj e−j,k e−i ni,k

+ s2 n2
j,k + s b ni e+

i,k e+
j nj,k − s b ni e−i,k e−j nj,k

− 1

3
s,k b,k + b2

,k +
1

3
s,k b,k + b2

,k

+ s b ni e+
i,k e+

j nj,k + b2
(
e+
i,k

)2

− b2 e−i e+
i,k e+

j e−j,k

+ s b nj e+
j,k e+

i ni,k + b2
(
e+
j,k

)2

− b2 e+
i e−i,k e−j e+

j,k

− s b ni e−i,k e−j nj,k − b2 e+
i e−i,k e−j e+

j,k + b2
(
e−i,k

)2

− s b nj e−j,k e−i ni,k − b2 e−i e+
i,k e+

j e−j,k + b2
(
e−j,k

)2

. (3.28)
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3.3 Bulk biaxiality 71

As a consequence, we obtain

|∇Q|2 = 2
3 |∇s|2 + 2 |∇b|2 + 2s2 |∇n|2

+ 2b2
(
|∇e+|2 + |∇e−|2 − 2(∇e+)Te− · (∇e−)Te+

)

+ 4sb
(
(∇e+)T n · (∇n)T e+ − (∇e−)Tn · (∇n)T e−

)

= 2
3 |∇s|2 + 2 |∇b|2 + 2s2 |∇n|2

+ 2b2
(
|∇e+|2 + |∇e−|2 + 2|(∇e+)T e−|2

)

− 4sb
(
e+ · (∇n)(∇n)T e+ − e− · (∇n)(∇n)T e−

)
, (3.29)

where we have used

(∇e−)T e+ = −(∇e+)T e−, (∇e±)Tn = −(∇n)Te±. (3.30)

We can further simplify expression (3.29) if we consider that

|∇e+|2 + |∇e−|2 =
∣∣(∇e+)T

∣∣2 +
∣∣(∇e−)T

∣∣2

=
∣∣(∇e+)T n

∣∣2 +
∣∣(∇e+)T e−

∣∣2

+
∣∣(∇e−)T n

∣∣2 +
∣∣(∇e−)T e+

∣∣2

=
∣∣∇n

∣∣2 + 2
∣∣(∇e+)T e−

∣∣2. (3.31)

Provided we define S = (∇n)(∇n)T and by using (3.31), it is immediate to give (3.29) the

expression quoted in (3.22). �

Let us analyze in detail the different terms appearing in (3.22). The first two terms

are trivial, since they simply penalize spatial variations of the scalar order param-

eters. They remind that, even in the presence of spatially-varying preferred values(
sopt(r), bopt(r)

)
, the equilibrium distribution may not imitate the optimal values.

The third term is proportional to s2 |∇n|2. This term has been already extensively

studied in [36, 19] and in Chapter 2. Its net effect is a decrease in the degree of

orientation in places where the director gradient is most rapidly varying. In par-

ticular, it strongly pushes the system towards the isotropic state s = 0 when the

director gradient diverges. The second-last term is proportional to b2. Since it is

positive definite, it simply enhances the character of b = 0 as optimal biaxiality

value. Thus, were not for the final term we will next consider, biaxiality would

never arise naturally in a nematic liquid crystal.

The last term in (3.22) is linear in b. It shifts the optimal biaxiality value away

from b = 0. In order to minimize the complete free energy density it is worth
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72 3. Induced biaxiality

to maximize the multiplying factor depending on S. This condition determines

the directions {e+, e−} in which the order tensor Q is pushed to break uniaxial

symmetry. Indeed, the term within brackets is maximized when {e+, e−} coincide

with the two eigenvectors of S that are orthogonal to n. If we denote by µ+, µ− the

correspondent eigenvalues, the linear term becomes simply proportional to (µ+−µ−).

Remark 3.2. In fact, let v+ and v− the unit eigenvectors of S (other than n). If α is

the angle between e+ and v+, the following decomposition holds

e+ = cosα v+ + sinα v− e− = − sinα v+ + cosαv−. (3.32)

Thus, a little arrangement gives

e+ · Se+ − e− · Se− = (µ+ − µ−) cos 2α. (3.33)

Extrema of (3.33) are given by α = π
2 k, k ∈ Z, so that, e+ and e− are indeed along the

eigendirections of S.

We thus arrive at the following result.

Natural Biaxiality Rule. Consider the symmetric tensor S = (∇n) (∇n)T . It

always possesses a null eigenvalue (with eigenvector n). Whenever its other two

eigenvalues do not coincide, biaxiality is naturally induced in the system, and the

optimal eigendirections of Q coincide with those of S.

Since the symmetric tensor S = (∇n)(∇n)T plays a crucial role in inducing biaxiality

we now analyze it in more detail. We will need the vector relations reported here

below. Let a,b,c be arbitrary vectors,

W(n) (a ⊗ b) = (n ∧ a) ⊗ b, (3.34)

(a ⊗ b)W(n) =
(
W(n)T (a ⊗ b)T

)T
= −

(
W(n)(b ⊗ a)

)T

= −
(
(n ∧ b) ⊗ a

)T
= −a ⊗ (n ∧ b), (3.35)

W2(n)a =W(n) (n ∧ a) = n ∧ (n ∧ a)

= (n · a)n− a = −
(
I − n⊗ n

)
a. (3.36)

In particular, we are interested in the following special cases of (3.34) and (3.35)

W(n) (e2 ⊗ e2) = e3 ⊗ e2 W(n) (e3 ⊗ e3) = − e2 ⊗ e3 (3.37)

(e2 ⊗ e2)W(n) = − e2 ⊗ e3 (e3 ⊗ e3)W(n) = e3 ⊗ e2. (3.38)
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3.4 Splay, bend and twist biaxiality 73

We are now ready to express the tensor S when (3.7) is used in place of ∇n.

S =
[
λ2e2 ⊗ e2 + λ3e3 ⊗ e3 + 1

2(n · curln)W(n) +
(
curln ∧ n

)
⊗ n

]

·
[
λ2e2 ⊗ e2 + λ3e3 ⊗ e3 − 1

2(n · curln)W(n) + n⊗
(
curln ∧ n

)]

= λ2
2e2 ⊗ e2 + (λ2 − λ3)(n · curln) sym(e2 ⊗ e3) + λ2

3e3 ⊗ e3

+ 1
4(n · curln)2(I − n ⊗ n) +

(
curln ∧ n

)
⊗
(
curln ∧ n

)
. (3.39)

Let {0, µ+, µ−} be the eigenvalues of S. The onset of biaxiality depends whether

they latter two are equal or not. Let curln = cn n + c2 e2 + c3 e3. From (3.39) we

obtain

(µ+ − µ−)2 = (c2
2 − c2

3 + λ2
3 − λ2

2)
2 + 4 c2

2c
2
3 . (3.40)

Remark 3.3. It is maybe useful to write the matrix form of S, as given by (3.39)

S =




0 0 0

0 c2
3 +

c2
n

4 + λ2
2 + 1

2cn (λ2 − λ3) −c2c3

0 −c2c3 c2
2 +

c2
n

4 + λ2
3 + 1

2cn (λ2 − λ3)



 . (3.41)

It is now easier to evaluate the non-zero eigenvalues of S

µ± =
1

4

(
c2
2 + 2c2

3 + c2
n + 2cn (λ2 − λ3) + 2

(
λ2

2 + λ3
2
)

± 2

√
(c2

2 − c2
3 + λ2

3 − λ2
2)

2
+ 4 c2

2c
2
3

)
, (3.42)

and then verify (3.40).

In the following Sections we will apply the above results to some practical situations,

in order to better interpret their implications.

3.4 Splay, bend and twist biaxiality

3.4.1 Planar fields

We begin by considering a quite common case, that is a situation in which the

director is everywhere orthogonal to a fixed direction ez. When this is the case we

can write

n(r) = cos ϑ(r) ex + sin ϑ(r) ey , (3.43)

where the tilt angle ϑ may depend on all three coordinates. Easy manipulations

allow us to write

∇n = n⊥ ⊗∇ϑ , (3.44)
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74 3. Induced biaxiality

with n⊥ = − sin ϑ(r) ex + cos ϑ(r) ey. Thus,

S =
(
n⊥ ⊗∇ϑ

)(
∇ϑ ⊗ n⊥

)
=
∣∣∇ϑ

∣∣2 n⊥ ⊗ n⊥ . (3.45)

The tensor S is symmetric as expected. Its eigenframe is {n,n⊥, ez}, with eigen-

values {0, |∇ϑ|2, 0}. The relevant eigenvalue difference (µ+ − µ−) = |∇ϑ|2 induces

spontaneous biaxiality whenever the tilt angle is not uniform. This result has a sim-

ple physical interpretation. Since the director does never lift from the (ex, ey) plane,

nematic molecules are naturally induced to avoid the direction ez. As a consequence,

the order tensor breaks the uniaxial symmetry. It decreases the eigenvalue in the ez

direction, and consequently increases the planar eigenvalue associated with n⊥.

Among the many examples of nontrivial planar configurations we next analyze three

particularly significant ones.

3.4.2 Pure splay

The splay field is defined as n(r) = er, where er is the radial unit vector in cylindrical

co-ordinates. If we complete an orthonormal basis by introducing the tangential and

axial unit vectors eϑ, ez, standard calculations allow to prove that

∇n =
1

r
eϑ ⊗ eϑ and S =

1

r2
eϑ ⊗ eϑ . (3.46)

Thus, µ+ = r−2, µ− = 0, and the elastic free energy density is given by

Ψel = L

(
1

3
|∇s|2 + |∇b|2 +

(s − b)2

r2

)
. (3.47)

Biaxiality favours the tangential direction with respect to the axial direction. The

r−2 factor implies that biaxiality (and the degree of orientation decrease as well) is

expected to show close to the symmetry axis. Figures 3 and 5 of [20] exactly confirm

this result.

3.4.3 Pure bend

We again consider the same cylindrical coordinate frame above, and analyze the

bend field n(r) = eϑ. We obtain

∇n = −1

r
er ⊗ eϑ and S =

1

r2
er ⊗ er . (3.48)

Again, µ+ = r−2, µ− = 0, and the elastic free energy density can be given exactly

the same expression (3.47). Biaxiality now favours the radial direction, and again

concentrates close to the (disclination) symmetry axis.
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3.4.4 Pure twist

In Cartesian coordinates the twist field is defined as n(r) = cos kz ex + sin kz ey. If

we again introduce the unit vector n⊥(r) = − sin kz ex + cos kz ey, we obtain

∇n = k n⊥ ⊗ ez and S = k2 n⊥ ⊗ n⊥ . (3.49)

We now have µ+ = k2, µ− = 0. Again, biaxiality favours n⊥, that is, the (x, y)

plane, with respect to the transverse direction ez. The elastic free energy density

still coincides with (3.47), with only a k2 replacing the r−2 factor. However, this

coincidence must not induce to guess that Ψel does always depend on s and b only

through the combination (s − b), as we will evidence below.

3.4.5 Escape in the third dimension

We now consider a nontrivial three-dimensional example: the escape in the third-

dimension. This field was first determined by Cladis and Kléman [30] as an every-

where continuous director field able to fulfill homeotropic boundary conditions on a

cylinder of radius R. Let n(r) = cos φ(r) er + sin φ(r) ez be the director field, and

let n⊥(r) = − sin φ(r) er + cos φ(r) ez . We obtain

∇n =
cos φ

r
eϑ ⊗ eϑ + φ′ n⊥ ⊗ er , (3.50)

S =
cos2 φ

r2
eϑ ⊗ eϑ + φ′2 n⊥ ⊗ n⊥ . (3.51)

Expression (3.51) for S shows that, within the order tensor Q, either n⊥ or eϑ may

be preferred, depending on whether φ′2 is greater or smaller than cos2 φ/r2. This

result turns out to be particularly challenging, if we consider that in Cladis-Kléman’s

escape in the third dimension the tilt angle φ is given by

φ(r) =
π

2
− 2 arctan

r

R
. (3.52)

A simple calculation allows us to show that (3.52) implies φ′2 = cos2 φ/r2. Thus,

the third-dimension escape turns out to be one of the few spatially-varying director

fields which do not induce any biaxiality. The elastic free-energy density in Cladis-

Kleman’s third-dimension escape is given by

Ψel = L

(
1

3
|∇s|2 + |∇b|2 +

8R2 s2

(r2 + R2)2
+

4(R4 + r4) b2

r2(r2 + R2)2

)
. (3.53)
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3.5 Surface biaxiality

In this Section we estimate the degree of biaxiality induced by an external surface on

which strong anchoring is enforced. We consider separately the cases of homeotropic

and planar anchoring.

3.5.1 Preliminary geometric tools

We first recall some results on differential forms and moving frames that will be

useful in the following (see [26, 44, 66] for details). Since we are only interested in

two dimensional manifolds embedded in R
3, we will always assume that a Riemann

structure (i.e., a scalar product) on the surface is induced by R
3. We will denote

the dimension of a manifold with a superscript number, i.e., M2 for a surface.

Let {ei}, i = 1...n be a frame for the manifold Mn, that is, each ei is a vector field

such that at every point of Mn the {ei} are n independent tangent vectors.

A connection is then defined by assigning the vectors ∇Xei, being X an arbitrary

vector field. The derivative ∇Xei can be decomposed with respect to the frame {ei}:
∇Xei = ek ωk

i(X). Here, ωk
i(X) assigns to each vector X the component of ∇Xei

along ek.

By the defining properties of connections, the functions X 7→ ωk
i(X) are linear.

Therefore ωk
i are differential 1-forms and are called connection forms.

By the arbitrariness of X, we can write

∇ei = ek ⊗ ωk
i. (3.54)

Let us now introduce the dual frame of 1-forms, or co-frame, {θj}, j = 1...n. This is

the set of 1-forms such that θj(ei) = δj
i . Since {θj} are a base for the space of the

1-forms, the connection forms can be written as a linear combination of the {θj}.
We will denote by ωk

ji the components of the connection forms with respect to θj:

ωk
i = ωk

ji θ
j. (3.55)

On Riemannian manifolds, the metric tensor g is by definition symmetric and pos-

itive definite. Therefore, we can always find an orthonormal frame field such that

ei · ej = δij , where the scalar (dot) product is inherited by the euclidean ambient

space. Equivalently, we can write the metric tensor using the dual language

g =

n∑

i=1

θi ⊗ θi. (3.56)
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We are now able to state what is the basic theorem for our purposes [26].

Theorem 3.4. Suppose (Mn, g) is a Riemann manifold and {ei}, i = 1...n is an

orthonormal frame field (a set of tangent vectors on a neighborhood U ⊂ M which

is linearly independent everywhere) with dual frame {θj}, j = 1...n.

Then there exists a unique set of n2 differential 1-forms ωj
k on U such that

dθj = θk ∧ ωj
k (3.57)

ωj
k + ωk

j = 0. (3.58)

Here “d” stands for the exterior derivative of forms and “∧” means the exterior

product of forms. Equation (3.58) guarantees that the connection forms are “skew

symmetric” and therefore there are only n(n−1)/2 independent forms. The connec-

tion ωj
k is completely identified by this theorem and when {ei} is a coordinate frame,

it corresponds to the usual Levi-Civita connection (which is metric compatible and

torsion free). Equation (3.57) is usually called first structure equation.

Remark 3.5. Usually in continuum mechanics the ambient space is R
3 and a slightly

different language is used. We write, as usually done in previous Sections, the gradient ∇Xe

as (∇e)X.

Let {ei}, i = 1, 2, 3 be an orthonormal moving frame. For every two orthogonal vectors a

and b we have

∇(a · b) = 0 = (∇a)T b + (∇b)T a. (3.59)

Moreover, by (3.54), we have (∇ei)ej = ek ωk
i(ej). Orthonormality then assures that

ωk
i(ej) = ek · (∇ei)ej .

When we employ the dual base and the decomposition (3.55), we also obtain

ωk
i (ej) = ωk

hi θh(ej) = ωk
hi δh

j = ωk
ji. (3.60)

It is now easy to show that the skew symmetry of the connection forms, as stated in (3.58),

is a consequence of the orthonormality condition

ωk
ji = ek · (∇ei)ej = (∇ei)

T ek · ej

= − (∇ek)Tei · ej = −ei · (∇ek)ej = −ωi
jk. (3.61)

Parallel surfaces

Let M3, p ∈ M3, be a Riemann manifold with a coordinate chart (u1, u2, τ) around

p. Take the metric tensor

g = g11du1 ⊗ du1 + g22du2 ⊗ du2 + dτ ⊗ dτ. (3.62)

The orthonormal dual frame is therefore

θ1 =
√

g11 du1, θ2 =
√

g22 du2, θ3 = dτ, (3.63)
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and the vector frame is

e1 =
1√
g11

∂

∂u1
, e2 =

1√
g22

∂

∂u2
, e3 =

∂

∂τ
. (3.64)

Taking the exterior derivative of (3.63) we obtain






dθ1 =
g11,2

2
√

g11
du2 ∧ du1 +

g11,3

2
√

g11
dτ ∧ du1 =

(
√

g11),2√
g11g22

θ2 ∧ θ1 +
g11,3

2g11
θ3 ∧ θ1

dθ2 =
g22,1

2
√

g22
du1 ∧ du2 +

g22,3

2
√

g22
dτ ∧ du2 =

(
√

g22),1√
g11g22

θ1 ∧ θ2 +
g22,3

2g22
θ3 ∧ θ2

dθ3 = 0.

(3.65)

The connection forms can now be calculated simply by comparing (3.65) with the

first structure equations dθj = θk ∧ ωj
k. Explicitly these are






dθ1 = θ2 ∧ ω1
2 + θ3 ∧ ω1

3

dθ2 = θ1 ∧ ω2
1 + θ3 ∧ ω2

3

dθ3 = θ1 ∧ ω3
1 + θ2 ∧ ω3

2.

(3.66)

After some algebra, we obtain






ω1
2 = −ω2

1 =
(
√

g11),2√
g11g22

θ1 − (
√

g22),1√
g11g22

θ2

ω1
3 = −ω3

1 =
g11,3

2g11
θ1

ω2
3 = −ω3

2 =
g22,3

2g22
θ2.

(3.67)

In particular, we note that ∇e3 have the simple expression

∇e3 = e1 ⊗ ω1
3 + e2 ⊗ ω2

3 =
g11,3

2g11
e1 ⊗ θ1 +

g22,3

2g22
e2 ⊗ θ2. (3.68)

Using the vector relation, commonly adopted in continuum mechanics for an or-

thonormal frame of reference in R
3, (a ⊗ b)c = a(b · c), we can thus write the

gradient in the familiar form

∇e3 =
g11,3

2g11
e1 ⊗ e1 +

g22,3

2g22
e2 ⊗ e2. (3.69)

Remark 3.6. One may wonder whether it is possible to introduce new coordinates

(v1, v2) such that the unit vectors e1 and e2 are coordinate vectors with respect to the new

system. Dually, the requirement is that (v1, v2) satisfy θ1 = dv1 and θ2 = dv2. By the

property of the exterior derivative d2 = 0 (i.e., taking the derivative twice yields zero), we
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e1

e2
ν

τ
P (u1, u2, τ)

PΣ(u1, u2)

Σ

Figure 3.1: Geometric setting for the surface parametrization introduced in the text.

locally have that (v1, v2) are the sought coordinates if and only if dθ1 = 0 and dθ2 = 0. In

our case, this translates into

dθ1 = (
√

g11),2 du2 ∧ du1 = 0 ⇒ g11,2 = 0 (3.70)

dθ1 = (
√

g22),1 du1 ∧ du2 = 0 ⇒ g22,1 = 0. (3.71)

Hence, the connection forms in this particular case reduce to






ω1
2 = −ω2

1 = 0

ω1
3 = −ω3

1 =
g11,3

2g11
dv1

ω2
3 = −ω3

2 =
g22,3

2g22
dv2.

(3.72)

Let now Σ be the smooth surface (embedded in R
3), which bounds the system we

are interested in. Let ν be the unit normal, everywhere pointing in the direction of

the bulk. In a neighbourhood of a point PΣ ∈ Σ, with local coordinates (u1, u2), we

parameterize points in the bulk through a coordinate set (u1, u2, τ) such that

P (u1, u2, τ) = PΣ(u1, u2) + τ ν(u1, u2) , (3.73)

where PΣ is the projection of P onto Σ, and τ is the distance of P from the same

surface. Of course such a parametrization is in general well-defined only in a neigh-

bourhood of the point PΣ.

For every fixed value of τ , (3.73) defines a parallel surface Στ at a distance τ from

Σ. Locally in R
3, these parallel surfaces give a regular change of variable between

the Cartesian coordinates (x, y, z) in R
3 and (u1, u2, τ). Otherwise stated, when we

consider only those points where the transformation is regular, (u1, u2, τ) are a local

coordinate chart for the manifold M3 given by the union of the parallel surfaces.
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Suppose that the coordinate vectors r1 =
∂PΣ

∂u1
and r2 =

∂PΣ

∂u2
are such that

r1 · r1 = E, r1 · r2 = 0, r2 · r2 = G. (3.74)

Furthermore, since the normal vector ν is a unit vector, we know that

0 =
∂

∂ui
(ν · ν) = 2ν · ∂ν

∂ui
, (3.75)

so that the derivatives of ν are tangent vectors. Therefore, we can make the further

assumption that

∂ν

∂u1
= −κ1 r1

∂ν

∂u2
= −κ2 r2 (3.76)

where κ1 and κ2 are the principal curvatures of the surface. Hence, (u1, u2) form

what is called an orthogonal patch adapted to the surface, so that the coordinate

vectors are along the principal directions.

Remark 3.7. The above conditions are not restrictive. In fact, it is well known that

everywhere outside umbilic points the first and second fundamental forms can be diagonal-

ized simultaneously [66] providing the two orthogonal principal directions. Thus choosing

the curvature lines as the coordinate lines, one can easily verify that (3.74) and (3.76) hold.

There is also an elegant and easy proof of this fact that employs the Frobenius’ theorem

in its dual form [82, 44]. The easiest way to enunciate it in a form suitable for our purposes is

Theorem 3.8. Let θa (a = 1, . . . , r) a set of 1-forms on an open set V ∈ Mn (r < n),

linearly independent at every point p ∈ V . The following statements are equivalent:

(i) There exist local coordinates (V ; ui) at every point p ∈ V , such that θa = Aa
b dub

(b = 1, . . . , r).

(ii) dθa ∧ θ1 ∧ . . . ∧ θr = 0.

We now want to apply this theorem to find if the frame {e1, e2} define integral curves

that can be used as coordinates curves on the surface. Consider the 1-form θ2, dual of e2.

Condition 3.8(ii) is

dθ2 ∧ θ2 = 0. (3.77)

This is trivially satisfied since all the p-forms with p > 2 are null on a 2-dimensional manifold.

By Frobenius’ theorem, there are local coordinates (u1, u2) on the surface and a scalar

function A (usually called an integrating factor), such that θ2 = Adu2. The 1−dimensional

submanifold N defined by u2 = const. has the tangent space spanned by ∂
∂u1 . Since

〈 ∂
∂u1 , θ2〉 = 〈 ∂

∂u1 , Adu2〉 = 0 (3.78)

and by definition 〈e1, θ
2〉 = 0, the vector fields e1 and ∂

∂u1 are everywhere parallel. Therefore

N is the integral line of the field e1.

Analogous argument applies when θ1 is considered, instead of θ2.
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We can now calculate the metric tensor of the 3-dimensional manifold M3 associated

with the change of variable (3.73): gij = ∂P
∂ui · ∂P

∂uj , i.e.

g = (1 − κ1τ)2 E du1 ⊗ du1 + (1 − κ2τ)2 Gdu2 ⊗ du2 + dτ ⊗ dτ, (3.79)

which is of the particular form considered in (3.62).

Let us introduce the orthonormal frame {e1, e2,ν} = {r1/
√

g11, r2/
√

g22,ν} and

the respective dual frame {θ1, θ2, θ3}. The theory described above in the Section

can then applied to this special case. It must be noted that the vector field ν

is now to be interpreted as an extension of the unit normal to the surface. In-

deed, ν is no longer to be thought of as defined only on the surface Σ but it is

ν
(
P (u1, u2, τ)

)
= νΣ

(
PΣ(u1, v2)

)
, where νΣ has been used here to identify the unit

normal to Σ.

We obtain from (3.67)






ω1
2 = −ω2

1 =
((1−κ1τ)

√
E)

,2
θ1−((1−κ2τ)

√
G)

,1
θ2

(1−κ1τ)(1−κ2τ)
√

EG

ω1
3 = −ω3

1 = − κ1

1−κ1τ θ1

ω2
3 = −ω3

2 = − κ2

1−κ2τ θ2.

(3.80)

Using ∇ei = ek ⊗ ωk
i, we finally have the gradients

∇e1 = −

(
(1 − κ1τ)

√
E
)

,2
e2 ⊗ e1 −

(
(1 − κ2τ)

√
G
)

,1
e2 ⊗ e2

(1 − κ1τ)(1 − κ2τ)
√

EG

+
κ1

1 − κ1τ
ν ⊗ e1 (3.81)

∇e2 =

(
(1 − κ1τ)

√
E
)

,2
e1 ⊗ e1 −

(
(1 − κ2τ)

√
G
)

,1
e1 ⊗ e2

(1 − κ1τ)(1 − κ2τ)
√

EG

+
κ2

1 − κ2τ
ν ⊗ e2 (3.82)

∇ν = − κ1

1 − κ1τ
e1 ⊗ e1 −

κ2

1 − κ2τ
e2 ⊗ e2. (3.83)
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82 3. Induced biaxiality

For completeness, we also report the gradient of a scalar function h(P )

∇h =h,1 du1 + h,2 du2 + h,3 dτ

=
h,1

(1 − κ1τ)
√

E
θ1 +

h,2

(1 − κ2τ)
√

G
θ2 + h,3 θ3

=
h,1

(1 − κ1τ)
√

E
e1 +

h,2

(1 − κ2τ)
√

G
e2 + h,3 ν, (3.84)

where, again, with an abuse of notation, we have identified the orthonormal frame

{e1, e2,ν} with its dual {θ1, θ2, θ3}.
Remark 3.9. It is perhaps convenient to rewrite (3.81)-(3.84) in matrix form with respect

to the basis {e1, e2, ν}. For shortness, define

A1 =(1 − κ1τ)
√

E A2 = (1 − κ2τ)
√

G (3.85)

B1 =
κ1

1 − κ1τ
B2 =

κ2

1 − κ2τ
. (3.86)

Hence, we have

∇e1 =




0 0 0

− A1,2

A1 A2

A2,1

A1 A2
0

B1 0 0



 ∇e2 =





A1,2

A1 A2
− A2,1

A1 A2
0

0 0 0

0 B2 0



 (3.87)

∇ν =




−B1 0 0

0 −B2 0

0 0 0



 ∇h =

(
h,1

A1

h,2

A2
h,3

)
. (3.88)

3.5.2 Homeotropic anchoring

In this Section, we assume that the surface director is parallel to the unit normal ν

to a given (smooth) surface Σ. We also assume that the director keeps its normal

direction, at least in a thin surface slab. Then, ∇n turns out to be closely related

to the curvature tensor. Using (3.83), we can write

∇n = − κ1

1 − κ1τ
e1 ⊗ e1 −

κ2

1 − κ2τ
e2 ⊗ e2 , (3.89)

where {κ1, κ2} and {e1, e2} denote respectively the principal curvatures and princi-

pal directions at PΣ.

From (3.89) we obtain curln = 0, G = ∇n, and

S =
κ2

1

(1 − κ1τ)2
e1 ⊗ e1 +

κ2
2

(1 − κ2τ)2
e2 ⊗ e2 . (3.90)
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Equation (3.90) shows that biaxiality arises naturally close to an external surface

where homeotropic anchoring is enforced. This effect is triggered by the difference

between the principal curvatures. More precisely, the tangent direction preferred by

the order tensor is the one along which the surface curves more rapidly. Close to

a symmetric saddle, where κ1 = −κ2, the denominator of (3.90) induces biaxiality

along the direction which is convex towards the side occupied by the liquid crystal.

3.5.3 Planar anchoring

When planar anchoring is enforced on a curved surface, it is natural to assume that

the chosen direction coincides with one of the principal directions along Σ. We

then keep the same notations as above and assume, for instance, n
(
P (u1, u2, τ)

)
=

n
(
PΣ(u1, u2)

)
= e1(u

1, u2).

When this is the case, by (3.81) we obtain

∇n = −

(
(1 − κ1τ)

√
E
)

,2
e2 ⊗ e1 −

(
(1 − κ2τ)

√
G
)

,1
e2 ⊗ e2

(1 − κ1τ)(1 − κ2τ)
√

EG

+
κ1

1 − κ1τ
ν ⊗ e1 (3.91)

According to (3.88), the matrix expression of S = (∇n)(∇n)T is

S =





0 0 0

0
(A1,2)2+(A2,1)2

A2
1 A2

2

−B1A1,2

A1A2

0 −B1A1,2

A1A2
B2

1



 . (3.92)

From expression (3.92) it is not immediately clear whether or not biaxiality is induced

and under which conditions. We can try to identify the uniaxial states, i.e., states

where S has two equal eigenvalues.

The matrix (3.92) is of the form

S =




0 0 0

0 a b

0 b c



 , (3.93)

whose non-trivial eigenvalues are

µ± =
1

2

(
a + c ±

√
4b2 + (a − c)2

)
. (3.94)
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84 3. Induced biaxiality

Uniaxial phase is given when the condition µ+ = µ− is fulfilled, i.e., when

4b2 + (a − c)2 = 0. Therefore, we have

uniaxial state ⇔
{

b = 0

a = c
⇔

{
B1A1,2 = 0

(A1,2)
2 + (A2,1)

2 = B2
1 A2

1 A2
2.

(3.95)

The only possible solutions are

{
B1 = 0

(A1,2)
2 + (A2,1)

2 = 0
,

{
A1,2 = 0

(A2,1)
2 = B2

1 A2
1 A2

2

. (3.96)

Taking into account expressions (3.85-3.86), we have that biaxiality is not naturally

induced whenever the geometric parameters of the limiting surface Σ satisfy one of

the two systems






κ1 = 0

E,2 = 0

κ2,1 = 0

G,1 = 0

,






κ1,2 = 0

E,2 = 0
(
(1 − κ2τ)

√
G
)2

,1
= κ1

2(1 − κ2 τ)2 EG

. (3.97)

A plane or a cylindrical surface are examples of (3.97)1. An example of (3.97)2
is less trivial to produce . It is interesting however to notice that both solutions

require that the principal curvature κ1 is constant along direction 2 and E,2 = 0.

Therefore, in the case n ≡ e1, the coefficient (1, 1) of the surface metric tensor

must be independent of the second variable, i.e., lengths along the direction e1

are measured in the same way when we move parallel to e2. Conditions (3.97) are

rather special. Generally speaking, we can say that biaxiality “almost always” arises

when a planar anchoring is enforced. In particular, we have biaxiality whenever the

curvature along the prescribed direction is different from zero.

Example 3.10. Consider a 2 dimensional sphere in R
3 with radius R. A possible

parametrization employing the azimuthal angle φ ∈ [0, 2π) and polar angle ϑ ∈ [0, π], is

P (ϑ, φ) = R sin ϑ cosφ i + R sin ϑ sinφ j + R cosϑk, (3.98)

where as usual i, j and k are the unit vectors in a Cartesian frame of reference.

The coordinate frame is orthogonal and when the vectors are normalized the following or-

thonormal moving frame is gathered






e1 = eϑ = cosϑ cosφ i + cosϑ sinφ j − sin ϑk

e2 = eφ = − sinϑ sinφ i + sinϑ cosφ j

ν = sin ϑ cosφ i + sin ϑ sin φ j + cosϑk.

(3.99)
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ϑ

z

y

e−

e+
ν

eϑ

Figure 3.2: Biaxiality axes when the planar anchoring n ≡ eϕ is enforced.

The metric tensor on the sphere is

g = R2
(
dϑ ⊗ dϑ + sin2 ϑ dφ ⊗ dφ

)
. (3.100)

Of course, it is not possible to identify two principal directions since every point of the

sphere is umbilic. Nevertheless, we identify κ1 e κ2 with the normal curvatures along the

(orthogonal) coordinate lines φ =constant and ϑ =constant and therefore κ1 = κ2 = −1/R.

A parallel surface at a distance τ from the sphere will be again a sphere with radius R + τ .

The formulas for the gradients of the frame basis (eϑ, eφ, ν) can be calculated from the well

known expressions for spherical coordinates found in vector analysis textbooks. We can as

well use (3.81)-(3.83) to get to the same result

∇eϑ = − 1

R + τ
(ν ⊗ eϑ − cotϑ eφ ⊗ eφ) (3.101)

∇eφ = − 1

R + τ
(ν ⊗ eφ + cotϑ eϑ ⊗ eφ) . (3.102)

Suppose now that a liquid crystal is in contact with the outside of the sphere and a planar

strong anchoring is enforced such that n ≡ eϑ. The tensor S is

S = (∇eϑ)(∇eϑ)T =
1

(R + τ)2
(
cot2 ϑ eφ ⊗ eφ + ν ⊗ ν

)
. (3.103)

So the directions of induced biaxiality are given by the coordinate direction eφ and the

normal vector ν. The biaxiality is maximum where the eigenvalues most differ. Since cotϑ

diverges at ϑ = 0, π we have the maximum biaxiality at the north and south poles, as it was

to be expected since these are defects points.

A more interesting scenario is gained when the planar anchoring is imposed along the par-

allels of the sphere n ≡ eφ. The tensor S is

S =(∇eφ)(∇eφ)T

=
1

(R + τ)2
(
cot2 ϑ eϑ ⊗ eϑ + cotϑ (eϑ ⊗ ν + ν ⊗ eϑ) + ν ⊗ ν

)
. (3.104)
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which is not diagonal and therefore it is not immediately clear along which directions the

biaxiality is going to arise. It is a matter of simple computation to find the eigenvectors and

the eigenvalues of (3.104)

e+ = − sinϑ eϑ + cosϑ ν = k (3.105)

n = eφ (3.106)

e− = cosϑ eϑ + sin ϑ ν, (3.107)

and {µ+, µ−} =
{
0,
(
(R + τ) sin ϑ

)−2
}
.

We want to stress the fact that the vector e+ is parallel to the fixed unit vector k and

therefore is always parallel to the z-axis. This gives a simple picture of how the biaxiality

axes rotates when moving from one pole to the equator along a meridian (see Fig. 3.2).

Again, the maximum biaxiality is obtained at the north and south pole since these are

defects points and the eigenvalue µ− is infinite.

When the planar anchoring is not assumed to be along a principal direction, the

same decomposition of §3.4.1 can be used

n = cos ϑ e1 + sin ϑ e2 , n⊥ = − sin ϑ e1 + cos ϑ e2, (3.108)

where ϑ is the tilt angle between n and e1.

We find,

∇n = − sin ϑ e1 ⊗∇ϑ + cos ϑ e2 ⊗∇ϑ + cos ϑ∇e1 + sin ϑ∇e2

=n⊥ ⊗∇ϑ + cos ϑ∇e1 + sin ϑ∇e2, (3.109)

and

S =(∇n)(∇n)T

= |∇ϑ|2 n⊥ ⊗ n⊥ + cos2 ϑ (∇e1)(∇e1)
T + sin2 ϑ (∇e2)(∇e2)

T . (3.110)

to be compared with (3.44) and (3.45). A direct dependence on geometric parameters

can be obtained by using (3.81-3.84).

3.6 Discussion

We have shown that any spatially-varying director distribution may induce the onset

in biaxial domains even in nematic liquid crystals whose ground state is strictly

uniaxial. In particular, in Section 3.3 we have stressed the crucial role played by

S = (∇n)(∇n)T . The tensor S, which is symmetric and positive semidefinite by
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construction, always possesses one null eigenvalue, with eigenvector n. Equation

(3.22) shows that biaxiality arises naturally whenever the other two eigenvalues of

S are different. Then, equation (3.40) shows that such eventuality is closely related

to the vector curln and the eigenvalues entering in the decomposition (3.7) of the

director gradient.

In Section 3.4 we have applied the considerations above to some model cases. As

it could be easily predicted the pure splay, bend, and twist fields, being all pla-

nar, exhibit some degree of biaxiality which privileges the director plane over the

orthogonal direction. A less trivial result is that there are spatially-varying direc-

tor configurations that do not induce biaxiality at all. Cladis-Kléman’s escape in

the third dimension yields a unexpected example of this phenomenon. Section 3.5

analyzes the onset of surface biaxiality both in the case of homeotropic and pla-

nar alignment. In the former case, biaxiality is ruled by the difference between the

principal curvatures along the surface.

To conclude our analysis we want to give a numerical estimate of the magnitude of

the biaxiality phenomena we are predicting. In all nontrivial cases, the free-energy

density will contain a O(b)-term, which triggers the biaxiality onset. To obtain a

rough estimate, we can neglect the O(b4)-term in ΨLdG, and the O(b2)-term in Ψel,

both with respect to the dominant O(b2)-term, appearing in ΨLdG. When this is the

case, the (local) preferred value of b may be obtained by minimizing the function

g(b) =
2

9

(
6Cs2 + 9Bs + 9A

)
b2 − 2Lsb

(
µ+ − µ−

)

≈ 2(2 + α)Cs2
prb

2 − 2Lsprb
(
µ+ − µ−

)

=
2Lspr

ξ2
n

(
b2 − ξ2

n

(
µ+ − µ−

)
b
)

, (3.111)

where we have replaced s ≈ spr and introduced the nematic coherence length

ξ2
n =

L

Cspr(2 + α)
. (3.112)

The (local) optimal value of the degree of biaxiality is then

bopt ≈ 1
2 ξ2

n

(
µ+ − µ−

)
. (3.113)

Though bopt may vary from point to point, we have to keep in mind that in general

the equilibrium configuration will not coincide with bopt because of the |∇b|2-term,

and the boundary conditions. To make an explicit example, let us consider a nematic

cylindric capillary of radius R, with homeotropic conditions enforced at the surface.

Then, the difference between the eigenvalues of S at the surface is R−2 and the

surface biaxiality is of the order of (ξn/R)2. Since the nematic coherence length
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hardly exceeds the tenths of a µm, we obtain bopt . 10−2 for a µm-capillary. The

scenario changes completely close to a nematic defect, where at least one of the

eigenvalues of S diverges. Both the pure-splay and the pure-bend examples above

yield (µ+ − µ−) = r−2, which implies bopt ≈ (ξn/r)2. The biaxiality cloud cannot

be neglected if we come too close to the defect.
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A

Equilibrium configurations close to a
bifurcation point

We want to study the extrema of a functional F , depending on a real function u(x),

its first derivative u′(x) and a positive real parameter λ,

F [u, u′|λ] =

∫ b

a
L (u, u′|λ) dx + W+f (u(a)) + W−f(u(b)), (A.1)

where W± are two positive constants and f is a smooth even function of u with a local

minimum for u identically zero and strictly convex around this point. Furthermore,

let the integrand be of the form

L (u, u′|λ) =
1

2
g(u)u′ 2 − λh(u), (A.2)

where g and h are smooth even functions of u; g is strictly positive and h is strictly

convex around u ≡ 0. The functional (A.1) is the prototype of many energy func-

tionals encountered in physics.

In order to obtain the Euler-Lagrange equation for (A.1), we introduce the first

variation, defined as

dF [u, u′|λ]ϕ =
∂

∂ε
F [u + εϕ, u′ + εϕ′|λ]

∣∣∣∣
ε=0

, (A.3)

whence

dF [u, u′|λ]ϕ =

∫ b

a

(
∂L

∂u
− d

dx

∂L

∂u′

)
ϕdx +

[(
∂L

∂u′ + W+∂f

∂u

)
ϕ

]

x=b

−
[(

∂L

∂u′ − W−∂f

∂u

)
ϕ

]

x=a

. (A.4)

Without loss of generality we suppose x ∈ [−1/2, 1/2]. Furthermore, we introduce

the following notation: plus and/or minus superscripts denote function values in

x = 1/2 and/or x = −1/2. From (A.4) and by the arbitrariness of ϕ, the equilibrium

equation

g u′′ +
1

2
gu u′ 2 + λhu = 0 x ∈ (−1/2, 1/2) (A.5)
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90 A. Equilibrium configurations close to a bifurcation point

follows together with the related boundary conditions

±g±u′± + W±f±
u = 0 x = ±1/2. (A.6)

We remark that Dirichlet (u± = 0) or Neumann ((u′)± = 0) boundary conditions

can be reached in the limiting cases g±/W± → 0 or W±/g± → 0, respectively.

By construction, the equilibrium equation (A.5) together with the boundary con-

ditions (A.6), admits the trivial solution u = 0. We consider a slightly perturbed

solution, with respect to u = 0. Assume the perturbation expansion

u(x) = εu1(x) + o(ε). (A.7)

The parameter ε is defined by ε =
√

λ/λ0 − 1 � 1, whence it follows easily

λ = λ0(1 + ε2), (A.8)

where the parameter λ0 will be determined within the linear analysis. By replacing

(A.7) and (A.8) into (A.5) and (A.6) we obtain, up to first order,

g0 u′′
1 + λ0h

0
uuu1 = 0, x ∈ (−1/2, 1/2), (A.9)

±g0 u′±
1 + W±f0

uuu±
1 = 0, x = ±1/2, (A.10)

where the superscript zero denotes functions evaluated in u = 0. The general solution

of (A.9) is

u1(x) = A1 cos(Ω x) + B1 sin(Ω x), (A.11)

where Ω2 = λ0h
0
uu/g0 and A1 and B1 are constants to be determined. Boundary

conditions (A.10) yield a linear homogeneous system in the unknowns A1 and B1




−Ωg0 sin Ω

2 + W−f0
uu cos Ω

2 −Ωg0 cos Ω
2 − W−f0

uu sin Ω
2

−Ωg0 sin Ω
2 + W+f0

uu cos Ω
2 Ωg0 cos Ω

2 + W+f0
uu sin Ω

2





(
A1

B1

)
=

(
0

0

)
(A.12)

whose solution is trivial unless the two equations are linearly dependent. Let M be

the 2 × 2 matrix at left side member of (A.12). Existence of nontrivial solutions

above the bifurcation point, impose det(M) = 0 which gives an implicit equation for

Ω (and therefore for λ0)

(W− + W+)Ω g0 f0
uu cos Ω +

(
W−W+

(
f0

uu

)2 − Ω2
(
g0
)2)

sin Ω = 0 (A.13)

and allows to calculate the ratio between the constants B1 and A1
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K =
B1

A1
=

−Ω g0 sin Ω
2 + W− f0

uu cos Ω
2

Ω g0 cos Ω
2 + W− f0

uu sin Ω
2

. (A.14)

Note that (A.13) admits a countable infinity of solutions. The solution in the inter-

val [−π, π] determines the critical parameter Ωcr and correspondingly λcr and Kcr.

Finally, we can put the linear solution in the form

u1(x) = A1

(
cos(Ωcr x) + Kcr sin(Ωcr x)

)
. (A.15)

It is easy to check that K 6= 0 only in the case of asymmetric boundary conditions,

W+ 6= W−.

The amplitude A1 still remains undetermined. This indetermination given by the

first approximation can be rendered definite by using compatibility conditions at

higher orders in ε.

Let us expand the solution as power series of ε

u = εu1 + ε2u2 + ε3u3 + ... (A.16)

By replacing this expression into (A.5) and (A.6) and keeping the ε2 terms we arrive

at

g0 u′′
2 + λcrh

0
uuu2 = 0

and the boundary conditions

±g0
(
u′

1

)±
+ W±f0

uuu±
1 = 0.

The equation for u2 as well as its boundary conditions, are identical to the ones

obtained for u1. As before, they do not allow the evaluation of the amplitude A1.

Pushing the perturbation algorithm to O
(
ε3
)

we obtain the equation for u3

g0 u′′
3 + λcrh

0
uuu3 = −1

2
g0
uu

(
u2

1u
′′
1 + u1u

′
1

2
)
− λcru1

(
h0

uu +
1

6
u2

1h
0
uuuu

)
, (A.17)

and the associated boundary conditions

±g0 u′±
3 + W±f0

uuu±
3 = ∓1

2
g0
uu

(
u±

1

)2
u′±

1 − 1

6
W±f0

uuuu

(
u±

1

)3
. (A.18)

Equation (A.17) can be solved taking into account (A.15). Its general solution is of

the form

u3(x) = A3 cos(Ωcr x) + B3 sin(Ωcr x) + up
3(x), (A.19)
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92 A. Equilibrium configurations close to a bifurcation point

where up
3(x) is a particular solution. After some algebra, it can be shown that

up
3(x) = αu1(x)3 +

(
1

2
+ β A2

1

)
xu′

1(x), (A.20)

where

α =
h0

uuuu

48h0
uu

− g0
uu

8 g0
β =

(
1 + K2

cr

)( h0
uuuu

16h0
uu

− g0
uu

8 g0

)
.

Substitution in the boundary conditions (A.18), gives a linear system in the unknown

A3 and B3 of the form Mx = b where x = (A3, B3)
T , b = (b−, b+)T with

b± = ∓g0 up
3
′± − W±f0

uuup
3
± ∓ 1

2
g0
uu

(
u±

1

)2
u′±

1 − 1

6
W±f0

uuuu

(
u±

1

)3
.

Let m1 and m2 be the column vectors composing M. In order to solve this system

we must have b ∈ span{m1,m2} = span{m1} = span{m2} since m1 and m2 are

linearly dependent (det(M) = 0). Therefore, we gather a third order algebraic

equation in A1 from one of the two determinants det(m1|b) = 0 or det(m2|b) = 0.

By introducing the notations v± = u±/A1, γ± =
√

Ω2
cr(g

0)2 + (W±)2 (f0
uu)2 ,

$ = γ+u−
1

[
(γ−)2 + 2W−g0f0

uu

]
+ γ−u+

1

[
(γ+)2 + 2W+g0f0

uu

]
, (A.21)

η = 12α g0 f0
uu + 3f0

uu g0
uu − g0 f0

uuuu, (A.22)

a tedious but easy computation yields the equation for the amplitude

A3
1

[
6β $ + 2

(
W−γ+(u−

1 )3 + W+γ−(u+
1 )3
)

η
]
+ 3A1 $ = 0. (A.23)

Equation (A.23) admits the trivial solution A1 = 0 and other two real opposite

solution. The former corresponds to the trivial solution which can be showed to be

unstable. Due to the symmetry of the problem the other two represent the amplitude

of nontrivial solutions with the same energy.

The procedure described above is fairly standard but rather involved. We now give

an easier way to gather the first order expansion and then resolve its amplitude

degeneracy. Consider a direct expansion of the functional (A.1) in power of ε, under

the assumptions u(x) = εu1(x), x ∈ [−1/2, 1/2] and λ = λ0(1+ ε2). We remark the

fact that we are only considering the first order expansion of the solution. On the

contrary, we expand the functional up to any desired order. Thus, up to the second

order we obtain

electronic-Liquid Crystal Dissertations - June 01,  2007

http://www.e-lc.org/dissertations/docs/2007_05_31_11_51_18



93

F [εu1, εu
′
1|λ] = f0

(
W− + W+

)
− λ0h

0 + ε2

∫ b

a

(
1

2
g0u′2

1 − 1

2
λ0h

0
uuu2

1 − λ0h
0

)
dx

+ ε2 1

2
f0

uu

(
W− (u−

1

)2
+ W+

(
u+

1

)2)
. (A.24)

It is easy to check that the O (1) term of the functional is constant, while the O
(
ε2
)

is minimized by the linear problem (A.9)-(A.10). Therefore, u1 is still of the form

(A.15).

To remove the amplitude indetermination we push the expansion of F to higher

orders. The O
(
ε4
)

term of the functional expansion is the first non-trivial term. It

reads

ε4

∫ b

a

(
1

4
g0
uuu2

1u
′2
1 − 1

2
λcrh

0
uuu2

1 −
1

24
λcrh

0
uuuuu4

1

)
dx

+ ε4 1

24
f0

uuuu

(
W− (u−

1

)4
+ W+

(
u+

1

)4)
. (A.25)

Once again, we stress the fact that in (A.25), only the O (ε) term of solution ex-

pansion has been taken into account. Note that the form of u1 is now known and

a direct integration of (A.25) can be performed, to yield a polynomial expression in

the amplitude A1 only. Therefore, minimization of the functional (A.25) reduces to

calculate the minima of a polynomial function.

By using the identity u′
1

2 + Ω2
cr u2

1 = A2
1 (1+K2

cr)Ω2
cr and integrating by parts, the

following representations of the integrals involved in (A.25) are obtained

∫ 1
2

− 1
2

u2
1 dx =

1

2

[
A2

1(1 + K2
cr)x − 1

Ω2
cr

u1 u′
1

] 1
2

− 1
2

,

∫ 1
2

− 1
2

u4
1 dx =

3

4
A2

1(1 + K2
cr)

∫ 1
2

− 1
2

u2
1 dx −

[
1

4Ω2
cr

u3
1 u′

1

] 1
2

− 1
2

.

By the use of the boundary conditions for u1 and differentiating with respect to the

amplitude, we finally gather the equation for A1

A3
1

[
12 g0

uu h0
uu (1 + K2

cr)Θ + g0
(
4h0

uu f0
uuuu − h0

uuuu f0
uu

)
Γ4

]
(A.26)

−6A1 h0
uu

(
2g0 + g0

uu

)
Θ = 0,

where we have set

Γ2 = W− (u−
1

)2
+ W+

(
u+

1

)2
, Γ4 = W− (u−

1

)4
+ W+

(
u+

1

)4
,
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94 A. Equilibrium configurations close to a bifurcation point

Θ = (1 + K2
cr)Ω

2
crg

0 + f0
uuΓ2.

If A1 has to realize the minimum, the derivative of this expression must be zero.

In this way, we arrive at an algebraic equation in A1 and A3
1 which gives the same

results of equation (A.23).

A quick check of the usefulness of these techniques may be the buckling of Euler’s

beam clamped at one end under an external axial load. In this case it can be shown

that the functional takes the form

F [ϑ′, ϑ|λ] =

∫ 1/2

−1/2

(
1

2
(ϑ′)2 + λ cos ϑ

)
dx, (A.27)

which has to be minimized with the boundary conditions ϑ(−1/2) = 0 and ϑ′(1/2) =

0. The first order approximation is the well known

ϑ1(x) = ±2
[
cos
(π

2
x
)

+ sin
(π

2
x
)]

. (A.28)
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