
Relaxation time for the ionic current in a nematic cell under a

large electric field

G. Barbero1,2, A. M. Figueiredo Neto1, F. C. M. Freire1,3, and J. Le Digabel1,4

1Instituto de Física, Universidade de São Paulo,

caixa postal 66318, São Paulo, 05315-970, São Paulo - Brazil.

2Dipartimento di Fisica del Politecnico,

Corso Duca degli Abruzzi 24, 10129 Torino, Italia.

3Departamento de Física, Universidade Estadual de Maringá,

Avenida Colombo 5790, 87020-900, Paraná, Brazil. and

4Ecole Normale Superieure de Cachan,

61 Av. du President Wilson, 94235 Cachan Cedex, France.

(Dated: September 11, 2006)

Abstract

We evaluate the ionic relaxation time of a nematic cell subjected to a potential difference, V0,

very large with respect to VT = KBT/q = 0.025 V, where KBT is the thermal energy, and q the

electrical charge of the ions, assumed monovalent. The analysis is performed by assuming that

the mobilities of the positive and negative ions are the same, and that the ions can be considered

point-like. We show that, for V0 À VT , the relaxation time tends to the time of flight of the ions.

In our analysis the ionic charges are assumed to form two surface layers responsible for a partial

screening of the external field. In this framework, the evolution of the surface-charge density

is determined by a simple differential equation related to the conservation of the ions number.

According to our calculations, the relaxation time of the surface density of ionic origin, and of the

electrical potential close to the electrodes, depends on the applied voltage, in agreement with the

experimental observations.

PACS numbers: 61.30.Hn,61.30.Dk
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I. INTRODUCTION

Nematic liquid crystals used in displays usually contain ions, which are responsible for

their rather large ionic conductivity [1, 2]. When an external field is applied to a liquid crystal

cell, the ionic impurities move close to the electrode of opposite sign, causing a reduction of

the effective electric field in the bulk [3, 4]. The time evolutions of the ions densities present

in a nematic liquid crystal cell subjected to an external electrical voltage V0 are determined

by solving the equations of continuity for the positive and negative ions, and the equation of

Poisson for the electrical potential [5]. Recently, the problem of the diffuse-charge dynamics

in electrochemical system has been reconsidered by Bazant et al. [6], by assuming that

the positive and negative ions are point-like, and they have the same mobility in the liquid

in which they are dispersed. In this framework they show that, for small applied voltages

(V0 ¿ VT = KBT/q = 0.025 V, where KBT is the thermal energy and q the electrical

charge of the ion, assumed monovalent), the evolution of the bulk density of ions and of

the potential is simply exponential, and they deduce the relaxation time. On the contrary,

for large applied voltages (V0 À VT ), the time evolution of the bulk density of ions is more

complicate. By analyzing numerically the problem with the same simplifying hypotheses

of point-like ions with the same mobility, we have shown [7] that the time evolution of the

electric voltage can still be well approximated by a simple exponential, whose relaxation

time depends on the applied voltage. By using simple arguments we proposed a formula

for the relaxation time containing two free parameters, able to fit in a reasonable manner

the numerical results. In this framework, a possible approach to obtain an approximated

formula for the relaxation time could be based on the analogy of the present problem with

the one named Maxwell-Wagner relaxation [8]. By assuming that the ions collected close

to the electrodes can be assimilated to a dielectric medium, with dielectric constant equal

to that of the bulk, it is possible to write an expression for the relaxation time similar

to Eq.(16) of Ref.[4], where L = d(VT/V0), [3]. However, following this approach, some

questions remain unanswered: i) is the diffusion of the ions taken into account? ii) is it

necessary to take into account both types of ions in the electrical current? iii) what is the

screening effect of these boundary ionic layers on the bulk electric field acting on the ions

responsible for the migration of the ions close to the electrodes? Another way to face the

problem is to assume that the ions collected close to the electrodes give rise to a charge
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surface-density, whose time evolution is controlled by the electric field in the bulk [3, 9].

Even in this case it is not clear how to write the total current responsible for the collection

of ions close to the electrodes, and if the effective electric field in the bulk takes into account,

correctly, the ions already pushed towards the electrodes. The aim of the present paper is

to analyze the dynamics of the ions present in the dielectric liquid when the cell is subjected

to a large external electrical voltage, and to deduce a formula for the relaxation time of the

current flowing in the circuit containing the sample. As in [6, 7] we assume that the ions

are point-like, and that the positive and negative ions have the same mobility. Since we are

considering ions dissolved in a nematic liquid crystal, where the hydration phenomenon is

absent, the assumption that the ions have the same mobility can be considered reasonable,

and the result of our calculations can be considered as a first approximation of the problem

under investigation.

II. THEORY

We assume that the sample is in the shape of a slab of thickness d, and that N is the bulk

density of positive and negative ions, in thermodynamical equilibrium (i.e. for d→∞ and

in the absence of the external electric field). The Cartesian reference frame has the z-axis

normal to the bounding surfaces, coinciding with that of the electrodes. In this framework

all physical quantities entering in the problem depend only on the coordinate z and time t.

In the presence of an external electric field, we indicate by np and nm the bulk densities of

positive and negative ions, respectively, by V the electrical potential, by V0 the difference

of potential applied to the cell by means of an external power supply, and assume that

V (d/2, t) = −V (−d/2, t) = V0/2. Due to the symmetry of the problem it follows that

V (z, t) = −V (−z, t). The basic equations of the problem are

∂np
∂t

= D
∂

∂z

µ
∂np
∂z

+
q

KBT
np

∂V

∂z

¶
(1)

∂nm
∂t

= D
∂

∂z

µ
∂nm
∂z
− q

KBT
nm

∂V

∂z

¶
(2)

∂2V

∂z2
= −q

ε
(np − nm), (3)

where D is the diffusion coefficient of the ions. As stated before, we have assumed that

Dp = Dm = D, consistently with the hypothesis that the ions are identical in all the aspects
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except for the sign of the electrical charge, and that the equation of Einstein-Smolucowsky

between the mobility, µ, and the diffusion coefficient,D, holds (µ/D = q/(KBT )). Equations

(1,2) are strongly non linear due to the presence of np (∂V/∂z), and analogous for nm, in the

equation of continuity. Consequently, an analytical solution is possible only in the case in

which δnp = np−N ¿ N . As discussed in [6] this implies that V0 ¿ VT = KBT/q. Here, on

the contrary, we are interested in the evolution of the ionic charge in the nematic cell when

V0 À VT . In this case, practically all the ions are pushed close to the electrodes [10]. This

means that the bulk density of positive ions is very large close to the negative electrode, and

vice-versa for the negative ions, but in the bulk it is negligibly small [11]. In the presence

of the external voltage V0, we indicate by nb the bulk density of positive ions, equal to that

of negative ions. The densities of the positive and negative ions close to the electrode of

opposite sign are indicated by np(z) and nm(z), respectively. The thickness of the surface

layer in which are confined the ionic charges is indicated by , where ∼ d(VT/V0) [3]. Since

np(z)À nb, as well as nm(z)À nb, we can introduce the concept of surface density of ions

according to the relations

σp =

Z −d/2+

−d/2
np(z) dz = hnpi (4)

σm =

Z d/2

d/2−
nm(z) dz = hnmi (5)

where, due to the symmetry of the problem, hnpi = hnmi = ns. It follows that σp = σm =

σ = ns , and ns À nb [10]. In the following we consider just the positive charges localized

in the surface layer (−d/2,−d/2+ ). However, due to the symmetry of the problem, similar

results are valid also for the negative charges localized in (d/2 − , d/2). From Eq.(1),

integrating from −d/2 to −d/2 + , and taking into account Eqs.(5) we get

dσp
dt

= D

∙
∂np
∂z

+
q

KBT
np

∂V

∂z

¸−d/2+
−d/2

. (6)

From the discussion made above we have thatµ
∂np
∂z

¶
−d/2+

= 0, and np(−d/2 + ) = nb. (7)

Furthermore, since the electrodes are assumed to be blocking, the current density of positive

ions, jp, has to vanish on the electrode. This implies that

jp(−d/2) = −D
µ
∂np
∂z

+
q

KBT
np

∂V

∂z

¶
−d/2

= 0. (8)
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Equation (8) simply states that the ions cannot leave the sample. If the adsorption-

desorption phenomenon is present [5], close to the limiting surfaces the ions are subjected also

to a localized potential responsible for the adsorption, whose penetration range is mesoscopic

[12]. In this case, as discussed in [13], it is possible to write a kinetic equation describing the

accumulation of particles in the mesoscopic layer close to the electrodes. However, Eq.(8)

remains valid. In our case, the evolutions of the bulk densities of ions and of the electrical

potential depend on the densities of ions localized close to the limiting surfaces. In this

sense, it does not matter if they are close to the electrodes or adsorbed by them. It follows

that Eq.(6) can be rewritten as

dσp
dt

=
qD

KBT
nb

µ
∂V

∂z

¶
b

, (9)

in which the subscript b states for bulk. The number of ions of a given sign, per unit area,

is Z d/2

−d/2
np(z) dz = N d, (10)

where N is the bulk density of ions in thermodynamical equilibrium introduced above.

Consequently, the bulk density of ions, nb, when on the boundary-surface layer is present

the surface density of ions σp, is given by

nb = N − σp/d. (11)

By taking into account these results, and the symmetry of the problem, from Eq.(9) we

obtain the differential equation [4]

dσ

dt
= µ

³
N − σ

d

´ µ∂V
∂z

¶
b

, (12)

where µ = qD/(KBT ). We stress that Eq.(12) was obtained from the equation of continuity

of the positive ions, and it takes into account the diffusion current. To proceed further it is

necessary to evaluate the electric field in the bulk, (∂V/∂z)b, when the ionic charges have

formed the boundary-surface layers, whose surface densities are ±σ.

III. BULK ELECTRIC FIELD

In order to evaluate the bulk electric field we take into account that in the sample there

are two boundary-surface layers, whose bulk electrical charge densities are ρp = ns q = ρ,
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for −d/2 ≤ z ≤ −d/2 + , and ρm = −ns q = −ρ, for d/2− ≤ z ≤ d/2. It follows that the

Poisson’s equations of the problem under consideration are

d2V1
dz2

= −ρ
ε

(13)

d2Vb
dz2

= 0 (14)

d2V2
dz2

=
ρ

ε
, (15)

where V1(z) = V (−d/2 ≤ z ≤ −d/2 + ), Vb(z) = V (−d/2 + ≤ z ≤ d/2− ), and V2(z) =

V (d/2− ≤ z ≤ d/2) [14]. From Eqs.(13,14,15), taking into account that V (z) = −V (−z),
we get

V1(z) = −(ρ/2ε) z2 + αsz − βs (16)

Vb(z) = αbz (17)

V2(z) = (ρ/2ε) z2 + αsz + βs, (18)

where αs, αb, and βs are integration constants to be determined by imposing the boundary

conditions V1(−d/2) = −V0/2, V1(−d/2 + ) = Vb(−d/2 + ), and dV1/dz = dVb/dz, for

z = −d/2 + , connected with the continuity of the electrical potential and of the electrical

displacement. Simple calculations give

αb =
V0
d
− ρ

ε

2

d
(19)

αs =
V0
d
− ρ

ε

(d2/2) + 2 − d

d
(20)

βs =
ρ

2ε

µ
d

2
−
¶2

. (21)

It follows that the electric field in the bulk is

|Eb| =
dVb
dz

=
V0
d
− q

σ

εd
, (22)

whereas the one at the surface is

|Es| = |Eb|+ q
σ

ε
, (23)

in agreement with Eq.(3).
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IV. TIME EVOLUTION OF THE SURFACE DENSITY

The differential Equation (12), taking into account Eq.(22), can be rewritten as

dσ

dt
= g(r − σ)(s− σ), (24)

where g = µq /(εd2), r = Nd, and s = εV0/(q ). The solution of Eq.(24), such that σ(0) = 0,

is

σ(t) = r s
1− exp(−t/τ)
s− r exp(−t/τ) , (25)

where the relaxation time τ is defined by

1

τ
= (s− r) g =

µ

d2

µ
V0 −

Nqd

ε

¶
. (26)

For practical applications it is better to rewrite Eq.(26) in terms of the Debye length of the

liquid containing ions, in themodynamical equilibrium, defined by λ20 = εKBT/(2Nq2) [12],

taking into account that = dVT/V0 [3]. Simple calculations give

1

τ
=
1

τ 0

(
1− 1

2

µ
dVT
λ0V0

¶2)
, (27)

where τ 0 = d2/(µV0) is the flight time of the ion in the electric field V0/d. An expression

similar to Eq.(27) was proposed in [7] by using simple considerations. We note that Eq.(27)

implies, in particular, that V0 À (d/λ0)VT . Since Eq.(27) is valid in the limit of V0 À VT ,

it follows that the relaxation time for the surface-charge density is of the order of τ 0. The

current in the external circuit is given by j = d(εEs)/dt, that taking into account Eq.(22)

and Eq.(23) can be written as

j = q

µ
1− VT

V0

¶
dσ

dt
. (28)

From Eq.(28) it follows that the relaxation time of the current in the external circuit is also

τ given by Eq.(27). From Eq.(28) it follows that the initial current in the circuit is given by

j(0) = µqN
V0
d

µ
1− VT

V0

¶
. (29)

In Eq.(27) the parameters characterizing the liquid are the Debye length in thermodynam-

ical equilibrium, λ0, and the mobility of the ions, µ. It follows that measurements of the

relaxation time of the current as a function of the external applied voltage, for V0 À VT ,
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allow the determination of these parameters by means of a best fit procedure. In [7] the

expression for the relaxation time proposed is of the type

τ = Aτ 0

(
1−B

µ
dVT
λ0V0

¶2)−1
, (30)

where A and B were two numerical constants that could not be determined by means of

simple considerations. In [7], comparing the exact numerical calculations with the predic-

tions of Eq.(30), the best fit is obtained for A = 1 and B = 1/2, in agreement with Eq.(27)

reported above.

V. CONCLUSIONS

We have considered the relaxation of the ions and of the electrical potential in a cell of

dielectric liquid containing ions subjected to a large difference of electrical potential V0 À VT .

Our analysis has been performed by assuming that the mobilities of the positive and negative

ions are the same, and that the ions can be considered point-like, as in the usual Poisson-

Boltzmann approximation [12]. We have assumed that, for V0 À VT , the ionic charges

are responsible for two surface densities of electrical charge. In this framework we have

determined the time evolution of the ionic charges collected on the electrodes. Moreover,

the bulk and surface electric field were calculated. By assuming that the electrodes are

perfectly blocking, we have determined the electrical current in the circuit containing the

cell, and shown that its relaxation time coincides with the one of the surface density of charge.

The physical parameters characterizing the system under analysis are the Debye length and

the mobility of the ions. Hence the model proposed here can be used to determine these

parameters, when the relaxation time of the current in the external circuit is measured as

a function of the applied voltage to the sample. As stated above, the ions are assumed

point-like and this assumption implies that their density has to be very small with respect

to nM = 1/(2R0)
3, where R0 is of the order of the geometrical dimension of the ion. As

discussed in [3], in the static case, close to the electrode, the bulk density of ions is of the

order of N(V0/VT ). It follows that our analysis works well for N(V0/VT ) ¿ 1/(2R0)
3, i.e.

for V0 ¿ VT/[N(2R0)
3]. This condition is always verified for usual values of R0 (∼ 1nm)

and of N (< 1020 m−3).
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