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We model the polarisation-dependent photo-contractions of polydomain nematic elastomers. Con-

traction initially arises by light-induced director rotation. At higher light intensity, strain recovers

because the local order parameter diminishes. Thus we predict photo-strains non-monotonic with

light intensity and the induction of a negative global order parameter for the system of polydomains.

Non-monotonic strains would give curvature reversal in thick samples. Our model also predicts an

elongational strain response to non-polarised light.

Light can externally stimulate actuation in a variety of monodomain liquid-crystalline elastomers [LCE] containing
moieties that undergo a trans-cis isomerisation on absorbing a photon of appropriate colour [1–3]. Conventional ther-
mally induced contractions of nematic monodomain elastomers can be huge (up to a factor of 4 or more). Heating
reduces the orientational order and hence the shape anisotropy of the chains making up the elastomeric network.
Macroscopic strain follows the network molecules’ shape change in a way we discuss below. Dye molecules (chro-
mophores, for example containing azo-benzene) are often rod-like in their ground (trans) state. Photon excitation
gives the bent cis state, see fig. 1(c), and nematic order is reduced, analogously to the thermal case, as the dye is
bleached. It has been proposed and observed that thermal and photo effects can be exactly mapped on to each other
[1]. Order parameter is recovered and hence strain reversed in the dark as bent molecules decay back to their straight
form. Photo-contraction becomes photo-curling when attenuation of light is appreciable through the thickness giving
rise to differential strains. We consider samples thin enough compared with absorption lengths that contraction is
uniform.

Are photo-elastic effects simply a thermal response when heat is released on the back-decay from the cis excited
to trans ground state? Ikeda and Yu et. al. [4, 5] induced a glassy polydomain network to contract (and curl) along
the polarisation direction of the incident light. No bulk thermal actuation of polydomain systems is possible since no
unique direction exists. If one assumes that heat is generated in domains aligned with the polarisation direction but
transferred quickly to all others, the unique direction is lost. Then these polydomain experiments appear to prove
that light actuation must be an optical rather than a disguised thermal effect. Domains are typically very small, often
not optically resolvable, and thus heat diffusion very quick. The polarisation specificity of these polydomain samples
offers much richer behaviour than monodomains – photo curling can be along any axis desired, useful for complicated
actuation. Suggested applications of photo-elasticity range from microfluidic valves to artificial muscles [6].

We model the photo-response of polydomain elastomers, rather than glasses. It is complex since we find that
director rotation of the domains occurs, in parallel with the usual reduction of orientational order, and is initially the
dominant cause of mechanical strain. We also find that the photo-strain is non-monotonic with the intensity of the
incident light and hence even the sign of curl induced in thick samples could reverse. At high intensity most domains
are reduced to local orientational isotropy – the equivalent to just heating a polydomain elastomer. The original
overall shape is then recovered even though the constituent domains are changed.
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FIG. 1: (a) a polydomain elastomer illuminated by light polarised along the E direction
(b) a test rod, direction û, in a region with director currently along n̂ (c) trans and cis
(bent) forms of a dye rod with a central azo unit. Parallel ordering is now hindered.

The situation we seek to model is shown in fig. 1, plane polarised light propagating in the k direction is incident
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normally on a thin polydomain LCE. A region with current director n̂ is shown; we do not discuss the origin of
domains or require their length scale (typically microns) in what follows. Consider a local test rod within the domain
shown described by a unit vector û. The probability of photon absorption by a rod depends on the intensity along its
axis, (E.û)2. The rate of the photo-induced trans-cis reaction is hence Γ

〈

(E.û)2
〉

nt(t), where Γ is a constant, and
nt(t) is the number density of trans nematogens at time t. The local thermodynamic average 〈〉 is taken over test
rods in the region with n̂. The back reaction rate, thermal or photo-induced, is (np − nt(t))/τ , where np is the total
number density of photo-nematogens and τ is the cis state’s mean lifetime. In the steady state these two rates match
and the fractional cis population nc is

nc

np
=

Γτ
〈

(E.û)2
〉

1 + Γτ 〈(E.û)2〉
. (1)

If I = E2 is the intensity and Q = 〈P2(cos α)〉 the current nematic order parameter of the uniaxial domain, then

〈

(E.û)2
〉

= 1

3
I(1 + 2QP2(cos θ)). (2)

We assume linear dynamics (i.e. unaffected by mechanical strain etc.) and that the angular diffusion rate is rapid.
The latter assures that Q takes the equilibrium value characteristic of the current concentration of unbent nematogen
molecules, and that the biaxiality is zero, reflecting the underlying nematic free energy.

The number of cis molecules as a fraction of the total number density of nematogens is

φ(Q, I, θ) = A
I(1 + Q(3 cos2 θ − 1))

(3Ic + I(1 + Q(3 cos2 θ − 1)))
, (3)

where A is the ratio of the number density of photo-nematogens to that of all nematogens, nn, i.e. A = np/nn, and

Ic = 1/Γτ is an equivalent intensity by which we reduce light intensities, Ĩ = I/Ic. We assume that cis molecules have
no nematic character, and thus no longer contribute to the nematic free energy. Measurement of nc/np in isotropic

polymers [7] suggests Ĩ can be as large as 10-12, while timescales for attaining photo-equilibrium range from minutes
to seconds, depending upon chemistry and stimulation of backreactions. The low illumination limit, Ĩ ≪ 1, of cis

concentration is thus φ → 1

3
ĨA(1+2QP2(cos θ)). Note, even domains at rightangles to the polarisation, with θ = π/2

and thus P2(cos θ) = −1/2, have some cis concentration induced if Q < 1 because not all rods in the domain are
perpendicular to E if the order is not perfect. At high intensity, Ĩ ≫ 1, φ → A – all photo-rods are bent and the
sample is bleached. Eventually, perpendicular domains are also bleached, except in the unphysical case of those with
perfect underlying order, Q = 1. It is this capacity to approach bleaching of all regions that causes the polydomain
system to lose overall mechanical response when light is intense.

The combined free energy density f in a domain is that of the ordering of the nematogens, fLC , plus the nematic
rubber elastic cost of deformation and director rotation with respect to the matrix fEL, that is f = fEL + fLC . The
wall energy, established at domain formation, may change on deformation and bleaching, but it is smaller than fEL

by a factor of ξN/ξD ∼ 10−2 [8] where ξD ∼ 10−6m is the domain size and ξN ∼ 10−8m is the nematic penetration
depth in elastomers. We take local directors in what follows and do not require details of ξD.

We adopt a mean field model of nematics based on the canonical Maier-Saupe (MS) model [9]. The true nematic
potential H is replaced by that of a mean field h. A test rod feels a mean field potential H0 = −hP2(cosα). The
mean field free energy density fLC is:

fLC = nn(1 − φ)(−kBT lnZ(h) + hQ − 1

2
J(1 − φ)Q2). (4)

T is temperature, J the MS interaction parameter, and Z(h) =
∫ π

0
exp(hP2(cos α)/kBT ) sinαdα the partition function.

Eqn (4) differs from the standard MS free energy density in two ways. The MS interaction parameter is reduced,
J → J(1 − φ), due to each nematogen’s reduced co-ordination. Also the number density of nematogens is reduced,
nn → nn(1 − φ). The optimal mean field and order parameter are found by minimising fLC with respect to h, and
the combined f with respect to Q. Eqn (3) shows that φ introduces a new source of Q-dependence, the extent of
which depends on illumination, Ĩ and the orientation, θ, of the particular domain. We sum over all domains, coupled
as specified below, following their evolving orientation from their initial randomly distributed values θ0.

Classical Gaussian rubber elasticity generalises [8] to a nematic rubber-elastic free energy density

fEL = 1

2
µTr

[

λ · l0 · λ
T · l−1

]

+ 1

2
µ ln

[

det[l]/ det[l0]
]

(5)
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in which µ = nskBT is the shear modulus, with ns the number density of network strands and λ the deformation

gradient tensor. The bulk modulus of elastomers is typically ∼ 104µ, and they consequently deform at constant
volume, constraining the deformation gradient tensor to have unit determinant. The remaining tensors l0 and l−1 are

the shape and inverse shape tensors defining the Gaussian distribution of uniaxial nematic polymer chains before and
after illumination. They are characterised by the anisotropy direction, initially n̂0 and rotating to n̂, and the degree
of order, initially Q0 and relaxing to Q which is the minimiser of f now with φ 6= 0. Within the freely jointed rod
model they are given by

l0 = a
[

(1 − Q0)δ + 3Q0n̂0n̂0

]

,

l−1 =
1

a

[

1

1 − Q
δ +

(

1

1 + 2Q
−

1

1 − Q

)

n̂ n̂

]

,

with a the rod length. We assume here for simplicity that the length a is itself unchanging as elements of the chain
transform from trans to cis, i.e. they bend. If the chromophores are pendant to the backbone, or are guests in the
matrix, this is a good assumption. If A ≪ 1 it is also a good assumption, even when rods are integral rather than
pendant.

The shape tensors set the scale for spontaneous strains. Heating a monodomain to the isotropic state (Q → 0 in l

above), eqn (5) predicts [8] the elastomer would suffer a uniaxial contraction of λm = ((1 − Q0)/(1 + 2Q0))
1/3

∼ 0.56
for the initial order parameter of Q0 = 0.615 adopted in our illustrations. Separate measurements [10] of the order
parameter Q(T ) (optically) and the spontaneous distortion confirm the freely-jointed rod model connection λm(T ) =

([(1 + 2Q0)/(1 − Q0)][(1 − Q)/(1 + 2Q)])1/3. In practice even nearly ideal nematic elastomers do not suffer the M-S
jump in order parameter (and hence in strain) at the transition temperature Tni because of non-ideal additions to
eqn (5) and internal fields. These effects are widely discussed in the literature, see a summary in [8], and briefly
below in the adoption of strains. These effects do not seem to influence the connection between order parameter and
spontaneous distortion.

Typically there are ∼50 nematogens per network strand, i.e. nn/ns ∼ 50. We reduce the mean field and coupling by
their natural scale, kBT ; J̃ = J/(kBT ) and h̃ = h/(kBT ). Both fEL and fLC scale as kBT , thus the only interesting
temperature dependence is via J̃ and h̃. The total free energy density is given by integrating the sum of fEL and fLC

over all domains

ftot =

∫ π

0

(fLC(θ0) + fEL(θ0)) sin θ0dθ0. (6)

The effect of the network on the phase transition is thus typically small, unless we are sufficiently close to Tni that
the low weighting ns/nn ∼ 1/50 of fEL is overcome.

We assume all domains suffer the same, simple uniaxial (about E) deformation gradient λ as the bulk





1
√

λ
0 0

0 1
√

λ
0

0 0 λ



 , (7)

that also conserves volume, det(λ) = 1. In the small strain limit this assumption gives the Taylor (upper) bound on

the free energy. In reality there must be a degree of non-affineness – the approximate form (7) generates unphysical
internal stresses (the variation of which can imply body forces) that we ignore. Similar approximations arise in mod-
elling the thermal transitions of monodomain elastomers with sub-domains undergoing phase transitions at differing
temperatures [11]. More general choices of λ, differing from domain to domain depending on the initial orientation,

θ0, can be made. For instance including simple shear opens up the possibility of soft deformations, allowing a domain
to rotate away from the polarisation direction with almost no elastic penalty as the domain contracts. For small
strains this would correspond to the Sachs (lower) bound on the free energy. However there are strong constraints of
compatibility and volume conservation that are difficult to meet at large deformations, even in an average sense, and
we retain the simple form above.

Inserting λ into fEL, eqn (5), and adding this energy to fLC gives the local free energy fEL + fLC to be minimised

in each domain over director orientation, θ, and order parameter, Q, at a fixed λ. The liquid crystal component fLC
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FIG. 2: The global z-contraction λ (also in inset) and mean orientational order S (inset)
against reduced light intensity Ĩ.

depends only on the current θ (through φ) whereas fEL depends on both θ and θ0; thus θ(θ0, λ). Equally the order
parameter in each domain has the dependence Q(θ(θ0), λ). Finally the integral over random initial conditions, θ0,
gives the total free energy ftot, eqn (6), to be minimised over λ to give the optimal global contraction. Since each
domain suffers the same compromise λ, they are in general at a strain unnatural for their current conditions. Such

strains act as powerful external fields and eliminate jumps in the order parameter of nematic elastomers.
Results: Figure 2 shows the photo-contraction λ(Ĩ) against reduced light intensity Ĩ for the ratio of network

strands to rods ns/nn = 1/50, the fraction of rods that are dye A = 1/6, initial order parameter Q0 = 0.615, and
inverse reduced temperature J̃ = 1/0.20. The transition in a non-crosslinked M-S liquid crystal is at J̃ = 1/0.22; thus
we are at a real temperature T = (.2/.22)Tni, say 32C below a transition at 50C. The contraction at low intensity is
drastic, followed by a slower recovery as Ĩ increases. There are two kinks in λ(Ĩ) as the elastomer recovers its initial
shape at high intensities.

The reasons for the non-monotonic response and the kinks are revealed by figs. 3 that show the new orientation θ
and new order parameter Q of the domains as a function of their initial orientation for selected intensities Ĩ.
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FIG. 3: Current director angle θ (a) and order parameter Q (b) against the initial director
angle θ0 of a domain for various intensities, Ĩ, indicated in the legend.
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At Ĩ = 0.225 fig. 3(b) shows very little reduction in local order parameters but fig. 3(a) reveals large rotations of
directors away from E, most especially of those with small (but 6= 0) initial angles θ0. The free energy is lowest when
the local order parameter is maintained, which is possible when n̂ is rotated away from E to avoid dye molecules
bending. The rapid overall contraction, λ < 1, partially accommodates these rotating regions. In rotating from 0 to
π/2, they want to contract along E and elongate in their chosen direction in the perpendicular plane. The overall λ is
a compromise between the drive of these regions and those regions as yet unchanging. The average order parameter,

S =
∫ π

2

0
Q(θ, λ)P2(cos θ) sin θ0dθ0, is plotted in the inset of fig 2 as 1 + S since S ≤ 0. It is no longer zero since the

domains are no longer randomly distributed but are biased towards θ = π/2; thus the negativity of S. Since the local
order parameters Q are little reduced at low Ĩ, then S ∼ Q0〈P2(cos θ)〉 initially, reaching a minimum of S ∼ −0.3.
Throughout, S remains close to λ − 1, that is λ ≃ 1 + S.

By Ĩ = 4.8 the domains initially around θ0 = 0 have jumped to θ ∼ π/2 to which, by now, all domains have tended.
Contraction due to rotation is thus complete and relaxation back towards λ = 1 now starts because the local order
parameters Q(θ0) are becoming depressed. There is a broad minimum of λ(Ĩ). As λ rises again, domains initially
near E but currently around θ = π/2 rotate back towards a cone closer to E. They are now bleached by E, that is,
most of their rods that are dye molecules are in their bent, excited states. In such regions the local order parameter is
very low. The bleached regions now want a lesser contraction along E, and overall the compromise λ starts increasing
more rapidly. The kink in λ(Ĩ) near Ĩ = 5 is where this reversion to θ ∼ θ0 ∼ 0 starts. Figs. 3 show in θ(θ0) and
Q(θ0) the cone of reorientation and bleaching at Ĩ = 5.175, just above the kink. S now becomes less negative because
contributors to it are losing their local order parameter and fewer are rotated towards the perpendicular plane.

The cone widens and λ recovers as Ĩ climbs, see Ĩ = 10.05. The regions, initially at high angles, that are now
bleached and therefore isotropic want to contract along their initial directions and elongate therefore along the
preferred direction. They thus accelerate the drive of λ back to 1. Bleaching extends to all angles by Ĩ ∼ 11. Beyond
this second kink λ ∼ 1 and S ∼ 0, see Ĩ ∼ 12. The individual Q(θ0) are now all small, though curiously those near
Q(θ0) ∼ 0 have increased slightly, a consequence of elongation toward λ ∼ 1.

Non-monotonicity in strain and in the macroscopic birefringence, S(Ĩ), are both predictions to be tested in the
next generation of experiments on these delicate, responsive materials. Polarisation-dependent curvature experiments,
when performed on polydomain elastomers rather than glasses, could give curling of the opposite sense if the intensity
of the minimum of λ(Ĩ) is exceeded in thick samples - the front surface may contract less than the rear surface.

For unpolarised normally incident light, our model predicts uniaxial extensions along the beam direction k, fig 1,
and corresponding contractions in the plane of the film. Now the regions with director in the plane of the sample
rotate towards the beam. Such strains turn out to be large in our model, i.e. comparable to those suffered by cooling
monodomains.
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