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Glassy and elastomeric nematic networks with dye molecules present respond to illumination by
reversibly straining because their order parameter is reduced. Elastomers may respond with huge
strains and possibly also with director rotation. Appreciable absorption means strain decreases with
depth into a cantilever, leading to bend – the basis of micro-opto-mechanical systems (MOMS). Ex-
perimentally, bend can occur even when Beer’s law suggests a tiny penetration of light into a heavily
dye-doped system. We model general non-linear absorptive processes behind deep penetration into
dyes, and also the resultant opto-elastic processes in dye-loaded cantilevers. Bleaching of the active
dye species allows deeper penetration of strong beams. When incident light of high intensity gives
optimal bending, for a given cantilever thickness, there are three neutral surfaces. We discuss the
form of the strains arising when only order parameter reduction is considered. Compressive strains
aid director rotation which may be important in elastomeric cantilevers. In practice non-linear
absorptive effects are probably important since heavily dye-doped optical cantilevers are commonly
used.

PACS numbers:

I. INTRODUCTION

Nematic elastomers can change their length by large
factors on losing or recovering their orientational order.
Contraction and elongation respectively arise because the
disordering or ordering of rods attached to the nematic
network chains causes the chains to become more spher-
ical or elongated, on average. Mechanical strains follow
the molecular shape changes of the constituent chains.
Nematic order can be decreased or increased by heating
or cooling and thus huge thermal strains of up to 500%
can be observed [1, 2]. Equally, if rods are also chro-
mophores, that is dye molecules, then absorbing a photon
in the straight (trans ) ground state will cause molecular
bend to the (cis ) excited state and thus disruption of the
rod ordering characteristic of the nematic phase. Photo-
strains are thus analogous to thermal strains in nematic
networks; they are also large and reversible [3, 4]. More
densely crosslinked nematic networks suffer small strains
on illumination. They have large moduli and are perhaps
better called nematic glasses [5]. Unlike elastomers, their
directors, the ordering direction on average of rods, seem
to be immobile under elongations imposed at an angle
and also probably don’t rotate during photo processes
[6].

Since photons are absorbed by the dye components
in the nematic, then light penetrating the face of a ne-
matic photo-cantilever will be attenuated and hence the
contractions generated will diminish with depth. Curva-
ture of the cantilever results, Fig. 1(a). It is important
in micro-opto-mechanical systems (MOMS) where ele-
ments can be optically-induced to bend as elastomeric
photo-swimmers [7] or as glassy cantilevers [8, 9]. Sheets
of polydomain nematic photo-glass can be induced to
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FIG. 1: (a) A cantilever bending towards its side illuminated
by a spot (P. Palffy-Muhoray). (b) Radiation penetration
with linear absorption length d giving light-induced bend.

contract by absorption in domains preferentially aligned
along the direction of polarisation of light [10]. When
there is a significant variation of intensity with depth
due to absorption, there is also bend, the direction of
which being that of the light polarisation [11]. This im-
portant experiment identifies the fundamental effects as
optical, rather than thermal effects generated by optical
absorption.

Simple absorption, when beams are weak, gives Beer’s
law. Intensity exponentially decays with depth and hence
there is also an exponentially decaying conversion of
straight to bent (trans → cis) forms of the dye molecules.
Assuming a linear connection (valid for small strains) be-
tween cis population and contraction, one can calculate
the cantilever curvature. A maximum curvature is pre-
dicted [12] for w/d ∼ 2.63, where w is the thickness of
the cantilever and d is the exponential decay length: if
w À d, only a thin skin of network contracts and its con-
tractile stresses are insufficient to make the unstrained
part of the cantilever below respond. Equally, if w ¿ d,
then there is little variation of photo-strain through the
thickness and the cantilever may contract but not differ-
entially with depth and thus will bend little. The extent
of bend, for a fixed w/d, was also predicted to be linear
with intensity.

The purpose of this note is to explain the experimen-
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tally common situation where heavily dye-doped can-
tilevers bend. High dye concentrations mean strong ab-
sorption and hence small d. Thus one is frequently in
the thin-skin limit d ¿ w, where bend might be ex-
pected to disappear, and yet appreciable mechanical ef-
fects are still seen [13]. We shall explain this effect for
the more straight forward case of no photo-induced di-
rector rotation, that is for nematic glasses, or for elas-
tomers with diffuse illumination. Director rotation has
been explored in polydomain photo-elastomers and may
be complex [10]. The remainder of this paper is organ-
ised as follows. In section II we derive equations which
describe the attenuation of light passing through a re-
gion with photo-active chromophores. Our analysis of
non-linear absorption is thus relevant to a wide range of
situations where dye is irradiated, and is not limited to
mechanics, which is our ultimate aim here. In section
III we show how attenuation leads to cantilever bending
and calculate the radius of curvature as a function of the
incident flux of light. In section IV we investigate the
distribution of strain throughout the bent sample, and
in particular we demonstrate that there can be several
planes throughout the cantilever on which the net strain
is zero. In section V we discuss the possible effects of tem-
perature change owing to absorption of photons on the
results presented thus far. Our analysis suggests that for
intense illumination temperature distributions are sym-
metric about the cantilever mid-plane and hence do not
contribute to bend, only contraction. Finally in VI we
present our conclusions.

II. ATTENUATION

We consider the situation of Fig. 1(b) of a long, slender
cantilver of thickness w illuminated by light with incident
flux I0. The absolute number density of chromophores
is ρph. At a time t after the onset of illumination and
depth x within the cantilever, the fraction of these chro-
mophores in the straight trans state is nt(x, t) and the
fraction in the bent cis state is nc(x, t) = 1 − nt(x, t).
The magnitude of the Poynting flux at x and t is I(x, t).
The dynamics of the trans fraction is determined by three
processes, (i) an optically stimulated trans → cis reaction
with rate Γ1I(x, t)nt(x, t), (ii) an optically stimulated cis
→ trans back-reaction with rate Γ2I(x, t)nc(x, t) and (iii)
a spontaneous, thermally activated, cis → trans back-
reaction with characteristic time τ . Γt and Γc subsume
absorption cross sections per chromophore and the quan-
tum efficiencies Φtc and Φct of the stimulated trans-cis
reaction and cis-trans back-reaction respectively, see [14]
for the rate equations in full with such factors explicitly
given. We take the absorption cross sections to be inde-
pendent of nematic order – itself another source of non-
linearity that is discussed in the polydomain elastomer
case [10]. Combining these three rates we obtain for the

rate of change of the trans fraction:

∂nt

∂t
= −ΓtI(x, t)nt(x, t) +

(
1
τ

+ ΓcI(x, t)
)

nc(x, t) (1)

In this paper we confine ourselves to the steady-state,
that is ∂nt

∂t = 0. Setting this condition in eqn (1) and
taking out a factor of τ gives the steady state trans and
cis populations:

nt(x) = 1+ΓcτI
1+(Γt+Γc)τI ; nc(x) = ΓtτI

1+(Γt+Γc)τI (2)

where I is now I(x) simply, and will be determined below.
We can identify two characteristic, material intensities,
It = 1/(Γtτ) and Ic = 1/(Γcτ). It is convenient to scale
the flux by its incident value, thus I(x, t) = I(x, t)/I0.
The reduced intensity is thus I = 1 at the entry surface
x = 0, see Fig. 1(b). We also define dimensionless quan-
tities α = I0/It and β = I0/Ic. Ignoring for the moment
attenuation, α measures how much a beam intensity I0

leads to trans conversion, eqn (1), by comparing I0 to It,
that is the ratio of the forward rate to the thermal back-
ward rate, α = I0/Ic = I0Γt/(1/τ). Likewise, β is the
ratio of the induced to the thermal back rates.

In terms of the reduced incident intensities α and β,
the steady state trans and cis populations are given by:

nt(x) = 1+βI
1+(α+β)I ; nc(x) = αI

1+(α+β)I . (3)

Here I is just I(x) since we have the equilibrium case.
In the Eisenbach experiments [15] the average conversion
was nc ∼ 0.84. His measurements of attenuation sug-
gested β ∼ 0, and thus one can conclude from eqn (3)
that his α ∼ 5. Note that α and β are independent of
chromophore concentration, but do depend on the choice
of the light polarisation [14]. Experimentally it is easi-
est to determine α for a system dilute in chromophores,
where one can ignore the complications arising when at-
tenuation is significant. These estimates for α are lower
bounds on actual values; including the effects of attenu-
ation through the cantilever will lead to higher values of
α. In later work [3] one can deduce that α ∼ 0.8.

The divergence of the Poynting flux, ∂I
∂x , at any point

through the cantilever is equal to the amount of en-
ergy taken out of the beam per unit volume per unit
time. For simplicity, we ignore curvature leading to obliq-
uity factors for the intensity of light falling on the sur-
face. That is, we consider small deflections or diffuse
light. Energy is taken out of the beam both by the opti-
cally induced trans→cis reaction and by the stimulated
cis→trans back-reaction, terms (i) and (ii) above. The
divergence of the Poynting flux is thus related to the sum
of the rates of these two processes. Thus:

∂I

∂x
= −γtΓtI(x, t)nt(x, t)− γcΓcI(x, t)nc(x, t) (4)

where the constant γ in each case subsumes the energy
of an incident photon, ~ω, the absolute number density
of chromophores, ρph, and the reciprocal of the quantum

electronic-Liquid Crystal Communications December 11,  2007

http://www.e-lc.org/docs/2007_12_11_10_08_01



3

efficiency Φ for the relevant transition. The appearance
of Φ as an inverse is requried since for each successful
transition in the rate ΓiIni (i = t,c) there will be unsuc-
cessful absorptions that do not contribute to ∂nt/∂t in
(1), but nevertheless still deplete the optical beam and
contribute to ∂I/∂x in (4).

Eqns (1) and (4) are a pair of coupled, non-linear, first
order partial differential equations for I(x, t) and nt(x, t).
Solving these equations subject to the boundary condi-
tions I(0, t) = I0 and nt(x, 0) = 1 is in general complex,
though analytically possible in some limits. We return
to this problem elsewhere and here take the equilibrium
state. Thus, using nc = 1 − nt, dividing through by
the incident intensity I0, and letting dt = 1/(γtΓt) and
dc = 1/(γcΓc) denote the characteristic lengths for op-
tical attenuation by trans and cis chromophores respec-
tively, one obtains [14, 16]

dI
dx

= −
([

1
dt
− 1

dc

]
nt +

1
dc

)
I(x). (5)

Note that the derivative has become a full derivative,
since time is no longer a relevant variable. In terms of the
parameters α and β, the ratio of the trans and cis lengths
is dt/dc = (γc/γt)(β/α). The ratio η = γc/γt is the ra-
tio of the quantum efficiencies for the trans → cis and
cis → trans reactions, that is η = Φtc/Φct. We shall
take η = 1 in the numerical illustrations in this paper.
We have ignored any attenuation by the background ma-
terial; one could include such effects by adding a simple
Lambert-Beer term −I(x, t)/dbg to the RHS of eqn (4).
Such absorption turns out to renormalize the intensity
but otherwise not change our results qualitatively.

Inserting the steady-state expression for nt from
eqn (3) into eqn (5), and then integrating w.r.t. x, sub-
ject to I(x = 0) = 1, we obtain:

ln I +
(

α− β′ + β

β′

)
ln

(
1 + β′I
1 + β′

)
= − x

dt
, (6)

where β′ = β(1+η). In general this expression is very dif-
ferent from Beer’s Law, I(x) = exp(−x/d), but reduces
to this form in various limits.

The deviation from Beer’s Law comes about because at
high intensities the cis population increases (bleaching)
and is generally less absorbing than the trans species.
Optical penetration is then more effective and is of
great significance for photo-mechanics. To see how non-
linearities (bleaching) manifest themselves, consider the
limit β → 0 [16] that arises when stimulated cis back-
conversion is weak (for instance in the work of Eisen-
bach). Under those circumstances Γc ∼ 0 in eqn (1), and
then (5) takes the form:

dI
dx

= −nt

dt
I(x). (7)

A non-Beer form arises because nt = 1/(1 + αI) itself
depends on I, eqn (3). Integration gives

ln I + α(I − 1) = −x/dt, (8)

also a β → 0 limit of (6). A formal solution of which is
I(x) = WL(αeα− x

dt )/α, where WL(x) is the Lambert-W
function [17]. The non-exponential decay persists until
around αI < 1, whereupon nt becomes independent of I
and (7) reverts to simple exponential form. We illuminate
this non-linear absorption more fully below, e.g. in Fig. 2.

The limiting cases of absorption are important.
(i) (α + β)I ¿ 1. Now nt ≈ 1 and nc ≈ 0 which renders
(5) trivially of the Beer form. The limit obtains when α =
I0/It and β = I0/Ic are both ¿ 1 (since I is bounded
by 1), that is, the incident beam is weak compared with
the material fluxes It and Ic. It also obtains when α
and β are not small, but when I ¿ 1/(α + β), that
is when the beam has diminished (albeit linearly rather
than exponentially, see Fig. 2) to the point that nt ≈
const. and Beer behavior is finally recovered. From (8)
one sees in fact I(x) ∼ exp[−(x−dtα)/dt] for x > dtα, a
shifted Beer form. This is the ultimate fate of all optical
beams provided that cantilevers are thick enough to get
this diminution of intensity.
(ii) The high flux limit, βI À 1, that is IΓc À 1/τ , is
where the stimulated back-reaction dominates over the
thermal back-reaction. In that case nt → β/(α + β) and
nc → α/(α + β) are again constants and again (4) takes
a Beer form in the equilibrium limit:

dI/dx = −Iβ(1 + η)/(dt(α + β)). (9)

The decay is exponential, I = exp(−x/deff) with an ef-
fective decay length deff = dt(α + β)/(β(1 + η)).
Thus, except for β = 0, profiles start in a Beer-manner,
have an intermediate non-exponential behavior if we have
α > 1 with β ¿ α, and then conclude with another Beer
decay. The intermediate regime, βI ∼ 1, is where the
stimulated back reaction rate is comparable to the ther-
mal rate.
(iii) When the decay lengths accidentally coincide, dt =
dc, that is γtΓt = γcΓc, one can easily see in either (4) or
in (5) that a Beer form pertains at all intensities or depths
into the photoisomerising medium: I = exp(−x/dc).

Statman and Janossy [14] investigated photo-
isomerisation of solutions of the commercially available
azodye Disperse Orange (DO3). They obtained a ratio
of α/β ∼ 5 while the accessible range of α is up-to ∼ 80
(corresponding to an incident flux of 15mW/mm2). The
spectral bands for trans→cis and cis→trans overlap
quite strongly for D03; one might thus expect much
smaller ratios of β/α to be accessible when using dyes
with more separated absorption bands. Indeed, Eisen-
bach’s attenuation study showed that, for his systems,
dc À dt and thus that α À β, possibly α ∼ 100× β. We
thus show results initially for very high ratios α/β for a
range of incident intensities α and then look at smaller
ratios where the non-linear region is not so pronounced.

As can be seen from eqn (3), the cis population is al-
ways reduced when β is finite. Thus for non-zero β we
require a larger value of α to achieve a particular value
of nc. Similarly attenuation will lead to reduced inten-
sities lower than unity in eqn (3), again requiring larger
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FIG. 2: The decay in reduced light intensity with reduced
depth for various reduced incident intensities α = I0/Ic.
Photo-induced back-reaction is minimal, β = 0.

values of α to achieve the same cis concentration. Thus
estimates of α from absorption are lower bounds on true
values.

A. CASE 1 - α/β = ∞

We start with the case in which the illuminating light
doesn’t excite the cis→trans back-reaction at all, i.e.
β = 0. Thus the intensity is described by eqn (8). Fig. 2
shows how for low α the decay from the surface inten-
sity is exponential, but that penetration is much deeper
for higher α, being initially a linear decay until finally de-
caying as an off-set exponential beyond the characteristic
depth dt, that is for x > dtα.

Such non-exponential behavior suggests caution when
trying to establish an extinction length from the at-
tenuation of a light beam on traversing a cantilever.
For instance [13] an attenuation of 99% on travers-
ing a cantilever of thickness 1µm, were Beer’s Law be-
ing followed, would result from an extinction length of
dBeer = 1µm/(2 ln(10)) ∼ 0.22µm. But if α is not small,
much more light penetrates to x = w (Fig. 2). The dBeer

value derived is a gross over-estimate of dt. Solving for
dt from eqn (8) for a given attenuation I(w) on reach-
ing the back face at x = w yields for 99% attenuation:
d ∼ w/(α + 4.6) = 1µm/(α + 4.6) → 0.04µm for α = 20.
The true dt associated with a possible exponential decay
may thus be much lower than the value dBeer estimated as
above, an indication that light has penetrated much fur-
ther into the sample than would be expected for a simple
exponential profile. Quantitative measurements of light
attenuation varying with thickness or varying with in-
cident intensity would resolve this ambiguity about dt

and also allow a determination of α. Attenuation at one
thickness can only give an upper bound on dt.

The reasons for departures from Beer’s law for the in-
tensity can be seen by returning the solution I(x) to
eqn (3) for the cis concentration. Fig. 3 displays ex-
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FIG. 3: Number fraction nc(x) of dye molecules converted to
cis against reduced depth x/d for various reduced incident
light intensities, α. Photo-induced back-reaction is minimal,
β = 0. Increasing α extends the conversion to greater depths
because of photobleaching of the surface layers. Reduced geo-
metric bend strain for α = 5, 10 are shown as straight dotted
lines. For cantilevers of thickness w = w∗ = 10.053d and
w = 12.5d respectively, there are three and two intersections
(neutral surfaces) with the photo-strain curves.

ponential decay in nc following I(x) for low intensity
(α = 0.1, 0.5). High incident intensity not only lifts
nc(x = 0) at the surface, but also flattens the decay
with depth – high nc means low nt = 1 − nc and hence
fewer trans dye molecules in a state to deplete the incom-
ing beam (a photo-bleached state). With photo-bleached
surface layers, radiation penetrates well beyond x ∼ dt,
and equally, contraction extends deep into the bulk, cer-
tainly beyond the Beer penetration depth dt.

For α = 0.5 a point of inflection first appears at the
surface, and moves inwards with increasing incident in-
tensity α. The cis fraction at the inflection is always
nc = 1/3 in this model. In the general case where β 6= 0
we find that the value of α at which the point of inflection
first appears at the front surface is a complicated function
of the constant ratio β/α, and the value of the cis fraction
at the inflection point is no longer 1/3. From eqn (3), the
surface cis concentration is nc(0) = α/(1+α), since there
I = 1, and rises to saturation, nc = 1, as intensity in-
creases. The precise form of the cantilever bend depends
critically on the shape of these nc(x) curves. In particu-
lar the development of a point of inflection allows three
intercepts of the straight, geometric strain curves, and
thus three neutral surfaces, we will later see. Since nc(x)
changes shape with increasing intensity, we will find an
elastic response that is highly non-linear with intensity.

B. CASE 2 - α/β = 50

We now consider the case with a weakly stimulated
back-reaction, β = α/50, and henceforth take η = 1.
Fig 4 shows plots of the reduced intensity as a func-
tion of x/dt for equivalent values of α chosen in Fig 2.
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FIG. 4: The decay in reduced light intensity with reduced
depth for various reduced incident intensities α, with a weakly
stimulated back reaction such that α/β = 50. The plots are
similar to those shown in figure 2.

The reduced intensity curves are largely identical to those
shown in Fig 2. Once again, for small values of α (=0.1,
0.5) the decay is essentially exponential, with a charac-
teristic length given by dt. Increasing α leads to deeper
penetration, with the initial decay being essentially lin-
ear. However close inspection of the α = 10 curve reveals
a slight upwards curvature, a result of the higher order
corrections in β that take us from (8) to (6). Eventually
I(x) becomes exponential at penetration depths x ∼ dtα
significantly greater than dt.

As we show above, for β & 1, that is here α & 50, the
initial behaviour should revert to being exponential be-
fore attaining the linear decay associated with non-Beer.
This point is easier to display below when we consider
smaller α/β ratios.

The cis profiles as a function of depth are shown in
Fig 5 and should be compared with those in Fig 3. For
the values of α plotted, the curves are essentially identi-
cal. High incident intensities result in larger cis fractions
near the surface, and a flatter decay as before. The point
of inflection occurs for a cis fraction less than the 1/3
found in the β = 0 case, but it is of equal importance
that inflections exist for the mechanics we explore later.

C. CASE 3 - α/β = 5

Increasing the stimulated back reaction further we take
α/β = 5. The curves for the reduced intensity as a func-
tion of depth, see Fig 6, now differ somewhat from those
in Fig 2. For the smaller values of α the curves remain
exponential with a characteristic length dt. Increasing α
leads to some increased penetration, without showing the
long linear decay in reduced intensity seen in Figs 2 and
4. For α = 10 we have βI = 2 at most, a value evidently
insufficient to satisfy limit (ii). We do not have a finite
initial region for small x where the decay is exponential
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FIG. 5: The decay in cis number fraction nc(x) with reduced
depth for various reduced incident intensities α, with α/β =
50.
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FIG. 6: The decay in reduced light intensity with reduced
depth for various reduced incident intensities α with α/β = 5.

with deff given in and below eqn (9). For these values of α
and β one would have deff = 3dt. The dashed line shows
the infinite α limit, and corresponds throughout its range
to eqn (9), i.e. an exponential with characteristic length
deff = dt(α + β)/(β(1 + η)) = 3dt. Note that the initial
of the α = 10 curve is close to that of the α = ∞ curve.

III. OPTICALLY-INDUCED CURVATURE

Fig. 1(b) shows a cantilever with radius of curvature R.
The geometric strain from bending is x/R + K, where R
is the radius of curvature adopted by the cantilever and
K is a mean contraction, both to be determined for a
given thickness w and illumination. Illumination changes
the natural length of the sample, the actual strain with
respect to this new natural length is x/R + K − εp
which, if we further reduce x/R and K by the dimen-
sionless constant −A connecting photo-strain εp and the
cis concentration, we obtain x/R + K + nc(x) for the
effective reduced strain. The mechanical stress σ is re-
lated linearly to the strain via the Young’s modulus E.
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FIG. 7: The decay in cis number fraction nc(x) with reduced
depth for various reduced incident intensities α with α/β = 5.

Since there are no external forces nor external torques,
mechanical equilibrium requires vanishing total force and
moment across a section, thus:

∫ w

0

σ(x)dx = E

∫ w

0

( x

R
+ K + nc(x)

)
dx = 0,

∫ w

0

xσ(x)dx = E

∫ w

0

x
( x

R
+ K + nc(x)

)
dx = 0.(10)

When the modulus is constant it drops out, but must
generally be retained (for some photo-glasses E is known
to vary with illumination [6]). Performing these integra-
tions we have:

w2

2R
+ Kw = −

∫ w

0

nc(x)dx (11)

w3

3R
+

Kw2

2
= −

∫ w

0

xnc(x)dx. (12)

Simplifying between these two expression we obtain for
the radius of curvature:

1
R

=
12
w3

∫ w

0

(w

2
− x

)
nc(x)dx (13)

Eqn (5) can be rearranged to give an expression for nc(x),
recalling dt/dc = ηβ/α, η = γc/γt, and nt = 1− nc:

nc(x) =
1

1− η
(

β
α

) +
dt

1− η
(

β
α

) 1
I

∂I
∂x

, (14)

Inserting this expression into eqn (13) and changing in-
tegration variables

∫ w

0
dx → ∫ Iw

I0=1
dI we have:

dt

R
= 12

(
dt

w

)3 1

1− η
(

β
α

)
∫ Iw

1

(
w

2dt
− x

dt

)
dI
I . (15)

Substituting for x/dt and w/dt from eqn (6) and per-
forming the integration, we ultimately obtain (with β′ =
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FIG. 8: Curvature reduced by 1/dt against reduced cantilever
thickness w/dt for various incident reduced light intensities α
(with β = 0). For high intensities, bleached surface layers let
light penetrate more deeply and hence a significant fraction of
the cantilever has its natural length contracted. Bend occurs
even for cantilevers much thicker than the linear penetration
depth dt.

β(1 + η):

dt

R
=

12α

β′ (w/dt)
3

[
Li2(−β′)− Li2(−β′Iw)−

− 1
2 ln(Iw) ln [(1 + β′Iw)(1 + β′)]

]
(16)

where Li2(x) =
∫ 0

x
dt ln(1−t)

t =
∑∞

k=1
xk

k2 is the diloga-
rithm [18]. The limit β → 0 within this expression re-
covers our earlier expression for the curvature [16]:

dt

R
=

12αd3
t

w3
× (17)

×
[

w

dt
Iw − (1− Iw)

(
1− w

2dt

)
− α

2
(1− I2

w)
]

At low incident light intensity, α → 0, analysis [12]
for exponential decay gave maximal reduced curvature
w/αR for w/d ∼ 2.63. In this limit 1/R ∼ α ∼ Io,
hence the division by α to obtain results universal for all
(low) intensities of incident light. As intensity increases,
the maximum in w/αR moves to larger w/d because the
radiation penetrates more deeply.

The non-linear regime, at fixed Beer’s Law penetra-
tion dt, is best revealed by reducing R by dt instead of
by w, and by not reducing 1/R by α. Fig. 8 plots dt/R
against w/dt to reveal maxima in d/R at greater w as
intensity α and thus penetration increases. At a given
w/dt, one sees curvature increase initially with intensity,
the Beer limit, and then reduce as penetration increases
and gradients of strain are reduced. Thus appreciable
curvature arises experimentally even in cantilevers thick
in the sense w À dt: in [11] it appears that curvature
is induced even though the cantilevers involved (with
w = 10µm) are apparently at least 100 times thicker than
their extinction length! (See also [13].) The curvatures
against thickness for various intensities α in the case of
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FIG. 9: Curvature reduced by 1/dt against reduced cantilever
thickness w/dt for various incident reduced light intensities
α (with α/β = 5). Maxima in curvature occur at smaller
thicknesses than in the β = 0 case where back reaction is
purely thermal.

α/β = 50 studied above are practically identical to those
in the β = 0 limit of Fig. 8. As the back-reaction rate in-
creases relative to the forward rate, α/β = 5, the penetra-
tion is less and the curvature maxima move to noticeably
smaller reduced thicknesses w/dt, see Fig 9. Quantitative
measurements of reduced curvature w/R with Io are re-
quired to probe this complex dependence of curvature on
thickness and incident intensity.

IV. STRAIN DISTRIBUTIONS

In the linear case [12] of bend induced by exponentially
decaying optical intensity, two neutral surfaces arise, that
is surfaces of zero stress where the geometric strains aris-
ing from curvature happen to match the local photo-
strain: xn/R + K + nc(xn) = 0. A classical cantilever
bent by imposed terminal torques has a single neutral
surface at its mid-point xn = w/2, so that stresses that
are equal and opposite about the x = w/2 sum to zero
to give no net force. In the current case of cantilevers
bending because of strains generated internally by light,
rather than by external imposition of torques, the addi-
tional constraint of no net torque leads to a more complex
distribution of stresses which gives rise to more than one
neutral surface.

The maximum values for both the curvature 1/R and
contraction K are intimately related to the positions of
the neutral surfaces. Differentiating eqns (11) and (12)
with respect to the cantilever thickness w and solving
between the resulting equations, we obtain the following
relationship:

∂R

∂w
=

3R2

w

∂K

∂w
, (18)

thus both 1/R and K are maximised for the same can-
tilever thickness. Furthermore, returning ∂R/∂w =
∂K/∂w = 0 to either of the differentiated equations, one

2
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w/d
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FIG. 10: Neutral surfaces for fixed incident light intensity
α = 5 as cantilever thickness w changes. At the w maximising
curvature, a third neutral surface appears from the rear face;
at greater w a neutral surface is lost at the front face.

finds that the thickness at which this happens, w∗, sat-
isfies w∗/R + K + nc(w∗) = 0, i.e. the straight line of
geometrically induced strain intersects the photo-strain
(∼ nc(x)) curve at the back surface of the cantilever.
The back surface is a neutral surface when the curvature
is maximised. The curve nc(x) is always a strictly de-
creasing function of x; however there is a fundamental
difference between the curves shown in Fig 3 for α < 0.5
and those for α > 0.5 - in the latter case the nc(x) curve
has a point of inflection (n′′c (x) = 0). The straight line of
geometrically generated strain imposed from curvature,
−(x/R+K), can intersect the nc(x) curve at most twice
if there is no point of inflection, and at most three times
if there is a single point of inflection. It is not possible
for the strain to satisfy the constraints of vanishing force
and torque, that is satisfy eqns (10), and have a neutral
surface at the back surface of the beam with only two
neutral surfaces; thus there is no maximum for the cur-
vature unless the underlying cis curve has an inflection
point.

To illustrate the significance of inflections, two sam-
ple curvature strains are superimposed in Fig 3. On the
α = 10, β = 0 curve is also plotted the straight line
−(x/R + K) for a cantilever of thickness w = 12.5dt, a
thickness that is before the inflection point in the nc(x)
curve. As can be seen, the straight line intersects the
underlying nc(x) curve only twice in satisfying eqns (10)
and locates only two neutral surfaces. On the α = 5,
β = 0 curve is also plotted −(x/R + K) for thickness
w = w∗ = 10.053dt. One sees that this line intersects the
underlying nc(x) curve three times, internally twice with
the third intersection (neutral surface) coinciding with
the back surface. This line is that of maximal possible
slope, ∂R/∂w = 0. With further increasing thickness,
d/R decreases. Eventually a neutral surface migrates to
the front face and is lost. The cantilever continues to
have only 2 neutral surfaces thereafter.

Fig. 10 shows how the neutral surfaces change with
increasing thickness at fixed illumination α = 5. With

electronic-Liquid Crystal Communications December 11,  2007

http://www.e-lc.org/docs/2007_12_11_10_08_01



8

two regions of compression and two of elongation, one
expects subtle behavior when considering compression-
induced director rotation[19] in such cantilevers, to which
we return elsewhere.

V. TEMPERATURE EFFECTS

We have neglected the effect of heat generated by ab-
sorption of light. Gradients of optical intensity in the
cantilever might be expected to generate gradients of
temperature and thus of thermal contraction, leading
to thermal bend. Experiments where polydomain elas-
tomers bend in the direction of the polarisation of light
[11] show directly that optical effects dominate (see the
analysis of polydomains in [10])over thermal component
of bend. We here quantify the relative size of optical and
thermal effects. Let the temperature distribution in the
beam be θ(x, t), and take the origin of the temperature
scale be such that the ambient temperature outside the
cantilever is zero, θ = 0. The temperature distribution
satisfies a continuity equation in which the heat flux con-
tains the usual thermal gradient term −κ ∂θ

∂x x̂ and the
divergence of the Poynting flux, I(x)x̂, is a source term:

C
∂θ

∂t
− κ

∂2θ

∂x2
= −I0

∂I
∂x

(19)

where C is the specific heat of the the cantilever per unit
volume and κ is the thermal conductivity perpendicular
to the director, that is along the normal to the flat surface
of the cantilever. The diffusion co-efficient D is given by
the ratio κ/C. Typical values for elastomers are around
∼ 10−7m2s−1 [20], with some anisotropy in D arising in
nematic elastomers from anisotropy in the conductivity
that we ignore here since thermal effects will in any case
turn out to be small. The time taken for heat to diffuse
across the thickness of the cantilever is ≈ w2/D ∼ 0.001s
for a 10µm sample [11, 21]. For times significantly longer
than this, one obtains the steady state solution θ(x). At
the front and back surfaces there are convective losses
which are described by Newton’s law of cooling, that is
the heat flux carried away from a surface is δθ(0) (the
temperature outside is θ = 0), where δ is the convective
heat transfer co-efficient. For free convection in air, δ ≈ 5
W m−2 K−1. These convection losses are equal to the
thermal flux of heat at the respective surfaces:

θ(0)− κ

δ

∂θ

∂x

∣∣∣∣
x=0

= 0

θ(w) +
κ

δ

∂θ

∂x

∣∣∣∣
x=w

= 0, (20)

where the signs reflect the direction of the outward sur-
face normal. The thermal conductivity is κ ≈ 0.2 W m−1

K−1 [22]. The solution to eqn (19) satisfying boundary

conditions is:

θ(x)
θ̄

= 1−
(
1 + δx

κ

)
(
2 + δw

κ

)
[
1 + Iw +

δw

κ

∫ 1

0

I(wy)dy

]

+
δw

κ

∫ x
w

0

I(wy)dy (21)

The characteristic temperature θ̄ = I0/δ is the temper-
ature that the sample surface would need to attain in
order to lose by Newton cooling all the heat equivalent
to the incident Poynting energy. Both of the integrals
appearing in this expression have been scaled such that
their value is bounded by unity. The scale of their contri-
butions is thus set by their pre-factor δw/κ. This dimen-
sionless quantity compares the thickness of the sample w
with the thermal penetration length set by the boundary
conditions κ/δ.

There are several interesting limits to this equation:
(i) Using the values for κ and δ given above and

assuming a cantilever thickness w ∼ 10µm we obtain
δw
κ ≈ 2.5 × 10−4 << 1, and thus the temperature dis-

tribution is essentially constant throughout the sample,
that is:

θ(x)
θ̄

=
(

1− Iw

2

)
+ O(δw/κ) (22)

A constant temperature through the sample leads to
contraction along the long axis of the cantilever, but it
will not induce bending, since this requires differential
contractions. Therefore in this limit, which is close to
experimental reality, bending effects in the steady state
are due to the optical effects discussed previously, rather
than heating.

(ii) Heat is produced proportionately to the rate opti-
cal intensity diminishes. If we are in a regime in which
intensity decays linearly with depth into the cantilever
(such as the α = 10 case in Fig 2 for w ≤ 10dt), that
is where dI/dx = const., then heat is generated at the
same rate through the cantilever. In the steady state it
diffuses to the surfaces, symmetrically if the surfaces are
at the same temperature, and hence heat does not con-
tribute at all to the bending. One sees this since now
eqn (21) becomes:

θ(x)
θ̄

=
(

1− Iw

2

) [
1 +

δw

4κ
− δ

κw

(
x− w

2

)2
]

, (23)

a temperature distribution which is indeed symmet-
ric about the mid-point of the cantilever. Since the
thermally-induced strains are also symmetric, they will
not produce bending, although once again it will pro-
duce an overall contraction. If the cantilever thickness
w is increased beyond the linear interval in Fig 2, then
asymmetry in the heat production starts to occur, with
less heat generated towards the back face. However, the
magnitude of the asymmetry is reduced by diffusion and
the thermal contribution to bend sets in only slowly with
increasing w, see (i) above.
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FIG. 11: Scaled intensity at the back surface Iw as a function
of the incident intensity α with β = 0 for various cantilever
thicknesses w/dt.

The neglect of heat is thus justified in two limits, firstly
the convective heat losses from the boundary are likely
to result in a uniform temperature distribution through
the sample for the experimentally realistic values of the
thermal conductivity κ and the convective heat transfer
co-efficient δ. Further, in the regime of linear (i.e. non-
exponential) decay of intense beams there is no thermal
component of bend.

Thermal effects become more extreme, especially in
elastomers, if an interior region of the cantilever’s tem-
perature exceeds the nematic-isotropic transition tem-
perature. At this temperature an extremely large strain
can develop in elastomers, and possibly in glasses. If it
occurs in a region symmetrically disposed about the can-
tilever mid plane, it could lead to pronounced contrac-
tions, but not bend. If it occurs in an asymmetrically dis-
posed region, it could lead to large bends – an extreme
case we return to in considering specifically elastomers
and thus at the same time considering director rotation.
Additionally one would there consider the displacement
of neutral planes due to volumes of the cantilever suffer-
ing large contractions of their natural lengths.

VI. CONCLUSIONS

We have shown that non-linear absorption (that is,
non-exponential profiles) can be invoked to explain
how bending can arise in cantilevers where, within
Beer’s law, one would otherwise expect no response.
At high enough incident light intensities, there can be
photo-bleaching and thereby penetration of radiation
and thus elastic response even in cantilevers so heavily
loaded with dye that the Beer penetration depth of
the linear regime would be insignificant compared with
the cantilever’s thickness. The non-linear response in
the high dye-loaded limit is possibly of the greatest
experimental relevance.

An experiment to explore the non-linear absorp-
tion processes we have described would be to measure
the intensity at the back surface for a sample of fixed
width w illuminated at the front surface. Altering the
incident intensity is equivalent to varying the parameter
α. Scaling the output intensity by its incident value
would produce a flat line as a function of α for simple
Beer law attenuation, deviations from a flat line are
thus a sign of non-Beer attenuation processes. Figure
11 shows the predicted variation of the reduced exit
intensity Iw with values of the incident intensity for
various cantilever thicknesses in the case β = 0. For thin
cantilevers w/dt = 0.1, Iw is close to unity, and only
increases slowly as α is increased - for thin cantilevers
nearly all of the incident flux is transmitted and there
is little absorption. Conversely for thick cantilevers
w/dt = 10 we see that there is very little transmittance
for small α. For larger incident intensities, such that
α & 5, the transmittance begins to increase rapidly with
α - a consequence of the increased penetration due to
non-linear absorption processes.
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