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We model how polarized and unpolarized light can cause mechanical response in nematic and
related photo-elastomers. The reduction of order by heating and the consequential large strains
that are known from nematic elastomers can alternatively be caused by light-induced bending of
rodlike dye molecules which then equally reduce the order of their nematic hosts. While there
is no mechanical response to heating of polydomain elastomers, mechanical response to light is
possible by the selective absorption of light according to how domains are aligned with respect to
the polarization direction or with respect to the propagation direction in the case of unpolarized
light. We find large contractions or elongations, depending on the nature of polarization. The
responses are non-monotonic with light intensity.

PACS numbers: 61.41.+e, 83.80.Va, 82.35.Ej, 78.20.Hp

I. INTRODUCTION

Mechanical response can be optically-induced in mon-
odomain liquid-crystalline networks with molecular rods
that undergo a trans-cis isomerization on absorbing an
appropriate photon. Response is huge in nematic elas-
tomers [1–4] where, as in all rubbers, elastic moduli are
small. Smaller, but still very useful responses in nematic
glasses exist [5–9] where moduli are large. We concen-
trate on photo-mechanical response in elastomers, which
can be understood by first considering their conventional,
thermally-induced contractions when they are nematic
monodomains. The contractions can be huge [10, 11],
up to a factor of 4 or more: heating reduces the ori-
entational order and hence the shape anisotropy of the
distribution of the polymer chains making up the elas-
tomeric network. Macroscopic strain then follows the
network chains’ shape change. In section IIC we sketch
the derivation of such shape change. Schematically, fig-
ure 1(a) shows this shape change in response to order
change.

Light can also reduce the order parameter in nematics
when dye molecules (chromophores, for example contain-
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FIG. 1: An initially unit, cubical nematic elastomer (a) con-
tracts on loss of order. The prolate spheroid characterizing
the distribution of chains becomes spherical; (b) contracts
along the original director, and elongates along the new, upon
rotation by 90◦ of the director and thus of shape distribution.
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FIG. 2: (a) trans and cis (bent) forms of a dye rod with a
central azo unit. Parallel ordering of the remaining rods is
hindered by the bent species. (b) a polydomain elastomer
illuminated by light polarized along the E direction (c) a test
rod, direction û, in a region with director currently along n̂

ing azo-benzene) are present. Chromophores are often
rod-like in their ground (trans) state. Photon excitation
yields a bent cis state, see fig. 2(a), and nematic order
is reduced, analogously to the thermal case, as the dye
is converted. In a nematic network, a mechanical strain
then follows [1]. In the dark, the order parameter re-
covers its original value as bent molecules decay back to
their straight trans conformation and hence the strain is
reversed. Another route to recovery is the stimulation,
by light of another color, of the cis to trans transition
which offers even greater speed and control.

We shall also consider another important mechanism
for photo-mechanical distortion, that of director rotation
rather than order change. It is known when nematic
elastomers are extended perpendicular to their initial di-
rector that the director is induced to rotate [12]. Since
the (on average) long direction of the chains (along the
director) is rotated, then the network naturally extends
in this direction, see figure 1(b). Indeed the stresses as-
sociated with strains imposed perpendicular to a director
which then rotates are known [13] to be much lower than
the stresses arising when there is no rotation or when
the elastomer is in the isotropic phase. Here our theory
suggests an inverse effect that under illumination the ne-
matic free energy can, at least at low light intensity, be
kept lower by rotating the director rather than reducing
the magnitude of the nematic order. There is then an as-
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sociated strain where the network’s shape follows that of
the rotating distribution of anisotropic chains. We shall
predict complex photo-mechanical response and find that
director rotation initially dominates over the reduction of
orientational order as the cause of mechanical strain.

The photo-response of polydomain systems appears
to prove that light actuation is in fact an optical effect
rather than simply light delivering heat in another way:
Ikeda and Yu et. al. [5, 6] induced a glassy polydomain
network to contract along the polarization direction of
the incident light. Harvey and Terentjev [14] fixed the
length of a polydomain nematic elastomer and instead
followed the build up of stress depending on the direction
the polarization of light with respect to the clamping di-
rection. No thermal actuation of polydomain systems is
possible since no unique direction exists. If one assumes
that optical effects are simply due to heat being preferen-
tially delivered to domains aligned with the polarization,
then difficulties also arise: Any unique direction associ-
ated with incident polarized light is also lost if one as-
sumes that heat, released on the back-decay from the cis
excited to trans ground state in regions aligned with the
polarization direction, is then transferred quickly to other
regions. The assumption of short times is reasonable:
Hon et al [15] obtained D ≈ 1.5× 10−7m2/s for the heat
diffusion coefficient of a side-chain nematic elastomer,
while Broerman et al [16] obtained D ≈ 1.1 × 10−7m2/s
for an isotropic, silicone-based elastomer. Assuming di-
rector correlation over l . 1µm we estimate the charac-
teristic time for heat to diffuse to another region to be
∼ l2/D = 10µs, much shorter than observed mechanical
response times.

The polarization specificity of the contractions of these
polydomain samples offers much richer behavior than
that of monodomains. In fact the polarization-specific re-
sponse of the Ikeda networks was photo-curling and could
be directed along any axis desired, useful for complicated
actuation. Sometimes photo-contraction manifests itself
as photo-curling of a cantilever or sheet – when light
attenuation is appreciable through the thickness of the
sample, it gives rise to strains greater near the front face
than those near the rear. However, here we only consider
samples thin enough compared with both the absorption
and depolarization lengths, such that both the contrac-
tion is uniform and the light remains polarized. Our
examination of uniform contraction mechanisms will be
important to subsequent studies of curling polydomain
cantilevers.

Suggested applications of elastomer photo-elasticity in-
clude micro- and nano- actuation by curling cantilevers
[17], microfluidic valves and pumps by optically writ-
ing localized topographical structures in elastomer films
[17, 18], and artificial muscles [19]. Our predictions of
elongation along the propagation direction for unpolar-
ized light falling on polydomain elastomers may be of
particular importance for the writing of localized struc-
tures by light beams on elastomeric films.

We limit our modeling to the photo-response of poly-

domain elastomers, rather than glasses. It is probable
that only the former have directors sufficiently mobile
in the solid state to rotate in response to light or im-
posed strains. Initial modeling [20], of weakly crosslinked
polydomain nematic elastomers illuminated with polar-
ized light, yielded a sharp initial contraction as direc-
tors rotated away from the optical electric field, eased
by a global strain that was a compromise between do-
mains with rotation differing according to their initial
orientation with respect to this electric field. Accord-
ingly negative optical anisotropy must be induced in the
network. We shall explore elsewhere the ramifications
for NMR which gives much more detail of the induced
molecular distributions. We additionally predicted that
the uniform photo-strain is non-monotonic with the in-
tensity of the incident light. At high light intensity do-
mains suffer the same trans to cis conversion and hence
suffer the same reduction in order, irrespective of their
initial orientation. With all domains equivalent, this sit-
uation is equivalent to just heating a polydomain elas-
tomer. Because there is no longer a favored direction,
the sample recovers its original shape even though the
constituent domains have individually changed their ne-
matic order. We shall see this non-monotonicity predic-
tion retained for unpolarized light incident on a poly-
domain elastomer. As well as dealing here with several
polarization and polydomain types, we also extend our
modeling to strongly crosslinked elastomers which offer
certain qualitative distinctions from our earlier analysis.

The non-monotonicity of the response with intensity
could even lead to a reversal of the sign of cantilever cur-
vature. When the incident light intensity is high enough
that the photo-strain at the upper surface vanishes, but
where there is contraction lower down, then the beam
will curve away from rather than towards the light.

II. A NON-LINEAR MODEL OF POLYDOMAIN
ELASTOMER PHOTO-RESPONSE

The situation we first model is shown in fig. 2. Plane
polarized light propagating in the k direction is incident
normally on a thin polydomain liquid crystal elastomer
(LCE). A region with current director n̂ is shown; we
neither discuss the origin of domains, nor require their
length scale (typically microns), in what follows. We
model an elastomer with initially random directions for
domains. At each point the extent of photo-reactions de-
pend on the angle between the local director and the
electric field. The strain however we will take to be
global, as we discuss below. Clearly mechanical effects
globally can only have the polarization direction E as
the unique direction. Having set up our model with the
example of polarized light, we will later consider inci-
dent unpolarized light, where the unique mechanical axis
will instead become k. Finally we consider the photo-
mechanical response of cholesteric elastomers to unpo-
larized light propagating along the helix axis.
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A. Intensity and angular dependence of isomer
concentrations

The rod-like character of molecules is responsible for
the orientational order of the nematic state. To examine
the stability of the nematic state, we therefore first de-
termine how their number changes as a result of irradia-
tion. Consider a total number density nn of nematogenic
rods, of which a number density np are photo-responsive
nematogens (giving a fraction A = np/nn). In the do-
main shown in Fig. 2(b) a photo-rod is described by a
unit vector û along its long axis. In the simple case of
chromophores also with û as the direction of their active
bonds, the probability of photon absorption by a rod de-
pends on the intensity along its axis, (E·û)2. The rate per
unit volume of photo-induced trans-cis reactions is hence
Γ

〈

(E · û)2
〉

nt(t), where Γ is a constant, and nt(t) is the
current number density of trans nematogens at time t.
The local thermodynamic average 〈〉 is taken over photo-
rods in the region with n̂. The thermal back reaction
rate is nc(t)/τ = (np − nt(t))/τ , where nc(t) is the num-
ber density of photo-rods converted to the cis state (thus
nt + nc = np). The cis state’s mean lifetime is τ , which
depends on temperature in the thermal case and on light
intensity when recovery is optically stimulated. We as-
sume that the cis rods have no orientational order and
are randomized when they reenter the trans population
on decay. In the steady state the forward and backward
rates match and the fractional cis population nc is

nc

np
=

Γτ
〈

(E · û)2
〉

1 + Γτ 〈(E · û)2〉 . (1)

We have assumed first order dynamics, that is, the for-
ward and backward reactions depend linearly on nt and
nc respectively, and also that the rates Γ and 1/τ are
unaffected by mechanical strain, nematic order etc. We
must now calculate the average

〈

(E · û)2
〉

, which can be
written as Tr[〈E E〉E 〈û û〉û] where 〈X〉E indicates an

average over the orientations of the electric field while
〈X 〉̂u indicates an average over the orientations of the

photo-rods. Assuming the electric field is linearly po-
larized along the z-direction gives 〈E E〉 = E2z z. The
traceless order parameter tensor for the (uniaxial) photo-
rods is:

Sij =
〈

3
2uiuj − 1

2δij

〉

û
= S

(

3
2ninj − 1

2δij

)

(2)

where S is the scalar uniaxial order parameter and n̂ is
the director. Using eqn (2) for 〈uiuj〉û we obtain:

〈

(E · û)2
〉

= 1
3E2(1 + 2z · S · z). (3)

In general photo-rods which lie on a cone at a fixed
angle with respect to the principal director n̂ will be dif-
ferently aligned with the electric field (unless E and n̂ are
parallel), thus such rods are differentially depleted and
we should expect illumination to induce biaxiality. How-
ever, we assume that the angular diffusion rate of rods

is rapid, thus each photo-rod explores all angles around
the director n̂ between excitation events. We thus ig-
nore biaxiality. With this simplification eqn (3) can be
expressed as:

〈

(E.u)2
〉

= 1
3I[1 + 2SP2(cos θ)], (4)

where P2(cos θ) is the second Legendre polynomial, the
intensity I = E2 and θ is the angle between the director
n̂ of the domain and the z-direction. Inserting this re-
sult into eqn (1) and normalising to the total number of
all nematogens, one obtains the fractional number of cis
molecules

φ(S, I, θ) = A
I[1 + S(3 cos2 θ − 1)]

3Ic + I[1 + S(3 cos2 θ − 1)]
. (5)

A characteristic light intensity has arisen from the bal-
ance of the forward (ΓI) and reverse (1/τ) isomeriza-
tion rates, that is Ic = 1/Γτ [20]. We reduce light in-

tensities by Ic, thus Ĩ = I/Ic. Measurement of nc/np

in isotropic polymers [21] suggests Ĩ can be as large
as 15, while timescales for attaining photo-equilibrium
range from minutes to seconds, depending upon chem-
istry and stimulation of back-reactions. This quantity
also determines the dynamics of non-linear light absorp-
tion and has been observed in experiments [22] to take
much higher values than those of Eisenbach.

Since they are bent, we take the cis species to lack any
nematicity. Indeed they dilute the ordering power of the
remaining both non-photo and photo (trans) rods. The
full difficulty of the problem can now be seen: in the ex-
pression (5) for φ, the order parameter S itself depends
on φ since this dilution will enter the free energy, the min-
imization of which determines S. The free energy is not
simply the standard nematic contribution familiar from
conventional liquid crystals, but also the nematic rubber
elastic free energy, and both contributors depend on the
(changing) angle of the local director. It is thus instruc-
tive to see how φ changes with both intensity and angle
of domain. The cis concentration in the low illumination
limit, Ĩ ≪ 1, is φ → 1

3 ĨA(1 + 2SP2(cos θ)). Note that
even domains at right angles to the polarization, with
θ = π/2 and thus P2(cos θ) = −1/2, have some cis con-
centration induced if S < 1 because not all rods in the
domain are perpendicular to E if the order is not perfect.
At very high intensity, Ĩ ≫ 1, all photo-rods are bent,
φ → A, and all domains are bleached, irrespective of
angle. Thus eventually, perpendicular domains are also
bleached, except in the unphysical case of those with per-
fect underlying order, S = 1. It is the eventual bleaching
of all regions that causes the polydomain system to lose
overall mechanical response when light is intense: if all
domains have the same φ, their mechanical fate must be
the same. The lack of a preferred direction implies zero
strain for a polydomain system, just as one obtains no
strain on heating such a system to another state of order.
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B. Mean field theory

A mean-field theory for nematics was first proposed
by Maier and Saupe [23]. The simplest Hamiltonian to
describe uniaxial nematic ordering arises after azimuthal
averaging about n̂ (the free angle in Fig 2(b)):

H = −1

2

∑

i6=j

JijP2(cos αi)P2(cos αj), (6)

where αi is the angle of the long axis of the ith nemato-
gen with respect to the director n̂, Jij represents the
interaction potential between the ith and jth rod and
the sum is taken over all pairs of nematogens. Maier
and Saupe (M-S) assumed that the interacting potential
arose from anisotropic van der Waals forces, but the pre-
cise form of Jij is not important here. We follow the
M-S approach, but with vital modifications to deal with
populations of rods changing on illumination by amounts
dependent upon the mean order.

To determine the mean-field free energy one adopts a
variational approach based upon the inequality:

F ≤ F0 + 〈H − H0〉0 (7)

where F0 is the free energy evaluated using a trial Hamil-
tonian H0, and F is that by using H, and 〈. . .〉0 de-
notes an average from H0. For the trial Hamiltonian
we assume an ensemble of non-interacting nematogens
placed within an as yet undetermined field h, giving H0 =
−h

∑

i P2(cos αi) and F0 = −kBT
∑

i ln (Z0(h/kBT ))
with the partition function Z0 associated with the trial
Hamiltonian given by:

Z0 =

∫ 1

0

d(cos α) exp [hP2(cos α)/kBT ] . (8)

The free energy fMS per unit volume of a M-S liquid
crystal is thus bounded by:

F ≤ nn

[

−kBT lnZ0(h/kBT ) + hS − 1
2JS2

]

, (9)

where nn is the number density of nematogens, J is a
coupling constant determined from the Jij above and
S = 〈P2(cos α)〉0 is the scalar order parameter. We now
sketch the familiar liquid crystal case since there are sig-
nificant deviations from this for photo-elastomers. Mini-
mizing the right hand side of (9) with respect to h gives
S = kBT∂(lnZ0)/∂h ≡ g0(h/kBT ). and thus:

h

kBT
= g−1

0 (S). (10)

See Appendix A for more details about g0(x) and its
inverse. Minimizing (9) now with respect to S gives
h = JS, thus giving S = (kBT/J)g−1

0 (S), which can be
inverted to give the Maier-Saupe self-consistency equa-
tion S = g0(JS/kBT ) for the order parameter. The
scaling of the coupling constant J with nn is important;

since the initial Hamiltonian H describes pair-wise inter-
actions we should expect it to scale quadratically with
the number density of nematogens nn. In eqn (9) we
have extracted one factor of nn as a pre-factor, thus J is
expected to scale linearly with nn.

The photo-elastomers we model contain several com-
plicating factors. First, the free energy also has the
elastic response of the elastomer which introduces addi-
tional S dependence and makes the result h = JS from
∂f/∂S = 0 no longer valid. However, relation (10) from
∂f/∂h = 0 does remain valid. Secondly, illumination
produces a population of cis rods within each domain,
which dilute the nematic ordering tendency of the re-
maining rods. Now the number density of nematogens
nn is reduced to nn(1 − φ): eqn (9) becomes:

fLC = nnkBT (1 − φ)
{

g−1
0 (S)S−

− ln Z0(g
−1
0 (S)) − 1

2 (1 − φ)
J

kBT
S2

}

, (11)

where we have replaced h/kBT from eqn (10) and we re-
call from eqn (5) that φ is a function of both S and the
angle θ between the domain considered and the electric
field. By itself, the nematic free energy above resem-
bles that of a nematic liquid with its interactions diluted
by the presence of non-nematic, bent rods. There is no
entropy of mixing since in a network the nematic ele-
ments are permanently linked and do not mix freely. Ap-
pendix B considers the consequences of this free energy
in isolation since the coupling of order with concentration
of cis give highly non-trivial variation of order with tem-
perature and polarization of illumination. The distinc-
tion between the global order parameter Q = (1 − φ)S
as measured by birefringence and that of the participat-
ing nematogens S as measured by NMR is also discussed
there.

C. Elastomer deformation free energy

Elastomers are networks of polymeric strands with
shapes that are induced to change by the ordering of pen-
dant or integral nematogenic rods. Classical Gaussian
rubber elasticity generalizes to a nematic rubber-elastic
free energy density [24, 25]

fEL = 1
2µTr

[

λ · l0 · λT · l−1
]

+ 1
2µ ln

[

det[l]

det[l0]

]

(12)

in which µ = nskBT is the shear modulus, with ns the
number density of network strands and λ the deforma-

tion gradient tensor. The bulk modulus of elastomers is
typically ∼ 104µ. They consequently deform at constant
volume, constraining λ to have unit determinant. The

remaining tensors l0 and l−1 are the shape and inverse

shape tensors defining the Gaussian distribution of uni-
axial nematic polymer chains before and after illumina-
tion. They are characterized by the anisotropy direction,
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initially n̂0 and rotating to n̂, and the degree of order, ini-
tially S0 and relaxing to a new S since φ 6= 0. Within the
freely jointed rod model we assume the polymer chains
between two cross-links consists of a sequence of con-
nected rods, which can rotate freely about their points of
connection. The trans and photo-inert nematogens have
a step-length a, while the cis nematogens have b. We fur-
ther assume that the orientational distribution of the cis
nematogens is isotropic, while the photo-inert and trans
molecules are uniaxially aligned. With these assumptions
the step-length tensors take their usual form:

l0 = l0⊥δ +
(

l‖ − l0⊥
)

n̂0n̂0, (13)

l−1 =
1

l⊥
δ +

(

1

l⊥
− 1

l‖

)

n̂ n̂, (14)

where the various step lengths are given by

l0⊥ = a(1 − S0) ; l0‖ = a(1 + 2S0) (15)

l⊥ = a
[

(1 − φ)(1 − S) + φ(b/a)2
]

(16)

l‖ = a
[

(1 − φ)(1 + 2S) + φ(b/a)2
]

(17)

Appendix C derives these results.
In a freely jointed model for main-chain elastomers the

order parameter of the nematogens S would be coincident
with that of the chain backbone SB . If instead the ne-
matogens are pendant to the polymer backbone these two
order parameters would in general differ. The pendant
rods order and then indirectly induce order in the back-
bone. Experimentally it has been observed by Finkel-
mann et. al. [26] that for prolate side-chain nematic
elastomers SB is proportional to S, thus the scalar order
parameters within the step-length tensors should include
a constant of proportionality when describing side-chain
elastomers. For this work we ignore this distinction.

The shape tensors set the scale for spontaneous de-
formations: Heating a monodomain initially with or-
der S0 directed for concreteness along n0 = z to the
isotropic state (S → 0 in l → aδ above), eqn (12) predicts

that the elastomer would suffer a uniaxial contraction of

λm =
(

l0⊥/l0‖

)1/3

= ((1 − S0)/(1 + 2S0))
1/3 ∼ 0.56 [25]

for the initial order parameter of S0 = 0.615 adopted in
our illustrations. [One inserts into eqn (12) a uniaxial de-
formation identical to λ

E
in (18) below for λ along with

l0 and l given above, the latter with φ = 0 and S = 0.]

If cooling down from the isotropic to nematic phase
there would instead be an elongation of 1/λm =
1.78. Separate measurements [26] of the order pa-
rameter S(T ) (optically) and the spontaneous distor-
tion confirm the freely-jointed rod model connection

λm(T ) = ([(1 + 2S0)/(1 − S0)][(1 − S)/(1 + 2S)])
1/3

where this contraction is associated with changes in or-
der from S0 to a finite S. In practice even nearly ideal
nematic elastomers do not suffer the M-S jump in order
parameter (and hence in strain) at the transition temper-
ature TNI because of non-ideal additions to eqn (12), in

effect internal fields. These effects are widely discussed
in the literature; see a summary in [25] and a modern
discussion plus experimental NMR analysis [27].

The essential anisotropy that determines λm also de-
termines the shape change of a monodomain that would
occur when the director is rotated by 90◦ with a change
in the order. One proceeds as above, but with an l having

S = S0, φ = 0 and with n rotated to being along x rather
than remaining along z that one associates with n0. The
λ now has as its diagonal elements λr, 1/(λrλzz), λzz

which is volume-preserving and represents an elongation
of λr along x. Simple minimization over λzz and λr [25]

yields λr =
(

l0‖/l0⊥

)1/2

→ 2.38 for S0 = 0.61. Note that

this elongation is greater than the elongation
(

l0‖/l0⊥

)1/3

associated with increasing order from the isotropic to ne-
matic state – redirecting an already elongated distribu-
tion of polymers has a much greater effect, see figure 1.

We now decide how to adopt a deformation gradient
tensor for the illuminated polydomain elastomer: Bound-
aries between individual domains are subject to several
constraints. Mechanical equilibrium requires the stress
tensor be divergence free, in particular in its variation
across boundaries. Geometric requirements place com-
patibility constraints upon the deformation gradient ten-
sor λ, which in the present case must also preserve vol-

ume. Similar constraints arise when modeling polycrys-
talline metals. We return to the question of compati-
bility in discussing the cholesteric case. Satisfying both
constraints is in general difficult and one usually adopts
one of two limiting forms. In the Sachs limit all domains
suffer the same stress, thus satisfying the mechanical re-
quirements but in general failing to meet the compatibil-
ity requirements. In the Taylor limit all domains suffer
the same deformation, thus meeting the compatibility re-
quirements but not in general obeying mechanical equi-
librium. For small strain elasticity these two limits form
lower and upper bounds on the true free energy of the
system. It is this second limit of uniform strain that
we adopt here, albeit in systems with large strains. We
take simple, uniaxial (about E or k – hence the labels),
deformation gradients λ:

λ
E

=





1√
λ

0 0

0 1√
λ

0

0 0 λ



 λ
k

=





λ 0 0
0 1√

λ
0

0 0 1√
λ



 (18)

that also conserve volume, det(λ) = 1. The first is for

polarized light, where E is the unique direction, the sec-
ond for unpolarized light where k is the unique direction.
In effect we assume that the global strain we must have
holds locally as well. The latter λ will be augmented with
compatible strains in the cholesteric case, section III C,
where we elaborate on this requirement.
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D. Other additions to the free energy

The wall energy that exists between the domains may
change as a result of elastic distortions. Approximately,
the elastic energy of a domain of characteristic size ξD is
∼ µξ3

D. The wall energy between the domains has two
contributions, a Frank term owing to the changing direc-
tor and gradients of the order parameter, and an elastic
term since the deformation gradient in the wall region
is not able to adopt its optimal value. These two con-
tributions are added and optimized over. The minimum
occurs when both contributions are equal, giving us a
length scale ξN =

√

K/µ ≈ 10−8m for the wall thickness
where K ∼ 10−11N is a Frank constant and µ ∼ 105Pa.
This length is known as the nematic penetration depth
[25] and arises whenever Frank and rubber elastic effects
compete. The energy per unit area of wall that arises is
γ ∼ √

Kµ and the wall energy of a domain is roughly
γξ2

D. The ratio of the energies is γ/(µξD) = ξN/ξD. A
typical domain size is ξD ≈ 1µm [28], thus the wall en-
ergy is roughly 100 times smaller than the elastic energy
of each domain. We therefore choose to ignore this con-
tribution to the free energy.

E. Overall free energy

Inserting λ into fEL, eqn (12), and adding this en-

ergy to fLC from eqn (11) gives the local free energy
fEL + fLC . The polydomain sample initially consists
of an isotropic distribution of domains, each with order
parameter S0. Domains are labeled by θ0, their initial di-
rector orientation relative to the electric field. At a given
λ, a domain initially at θ0 will move to a new value θ
dependent on both θ0 and λ; thus θ = θ(θ0, λ). Equally
the order parameter in the domain will change from its
initial value S0 to a new value S which depends on θ0 and
λ, thus S = S(θ0, λ). To calculate the total free energy,
ftot, of the material we must then sum over all initial
orientations of the domains, thus:

ftot(λ) =

∫ π

2

0

(fLC(θ0) + fEL(θ0)) sin θ0dθ0. (19)

The total free energy ftot is a function of the deforma-
tion λ, and a functional of the order parameter S(θ0, λ)
and the director orientation θ(θ0, λ). For each value of
θ0 we minimize the integrand in eqn (19) over θ and S,
then sum over all domains, and finally minimize over λ.
Since each domain suffers the same compromise λ, they

are in general at a shape suboptimal for their current
conditions. Such distortions act in effect as powerful ex-
ternal fields. As with all nematics, a strong enough field
can induce supercritical behavior. Here they can elimi-
nate jumps in the order parameter of LCEs as they are
heated to isotropy.

We summarize the quantities appearing within the to-
tal free energy density, eqn (19), their physical meaning

and realistic values.
J̃ = J/kBT – scaled Maier-Saupe interaction parameter,
which sets the initial value of the order parameter within
each domain. Within bare MS theory the isotropic-
nematic transition occurs for J̃ = 4.54. In all the work
presented here we set J̃ = 5, which gives S0 = 0.61. In
relation to the nematic-isotropic transition temperature
TNI this choice corresponds to an operating temperature
T0 given by T0 = (4.54/5)TNI = 0.91TNI .
µ̃ = µ/(nnkBT ) – is the shear modulus reduced by the
natural energy scale appearing in eqn (11) for the nematic
energy density. Thus in these units the shear modulus
is given by the ratio of the number density of network
strands to the number density of nematogens, and is thus
a measure of the cross-linking strength. Values for elas-
tomers range from roughly 0.1 to 0.02.
Ĩ = I/Ic – the reduced intensity which corresponds to
the optical intensity, divided by the intensity Ic which is
a material constant of the elastomer film under consider-
ation. Results from Eisenbach [21] indicate that values

up to Ĩ ≈ 15 are easily accessible, and those from Serra
and Terentjev [22] suggest values ∼ 80.
A – There are two types of nematogens, photo-active
and photo-inert. The fraction of nematogens which are
photo-active is given by A. We shall take A = 1/6
throughout this work, that is, there are five photo-inert
nematogens for each photo-active one. Here we make
the additional simplification that the ordering of the in-
ert nematogens and that of the trans photo-rods is the
same.

III. RESULTS

We present results showing the equilibrium deforma-
tion gradient λ as a function of the incident reduced in-
tensity Ĩ for three separate cases: (i) polarized light upon
a polydomain elastomer (ii) unpolarized light upon the
same sample, (ii) unpolarized light on a planar distribu-
tion of domain directors, i.e. a two-dimensional equiv-
alent of a polydomain that is perhaps realizable as a
cholesteric elastomer. In each of these three separate
cases, we present results for a strongly cross-linked sam-
ple with µ̃ = ns/nn = 1/10 and more weakly cross-linked
sample with µ̃ = 1/50.

A. Incident polarized light

A deformation uniaxial with E is inserted into the elas-
tic energy. We do not give details of how the energy can
first be minimized with respect to λ given the initial and
current director directions and the initial and current or-
der parameters – see [25] for examples of how this is done,
and the cholesteric section below.
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FIG. 3: The global z-contraction λ against reduced intensity
of polarized light Ĩ for a strongly cross-linked elastomer with
µ̃ = 1/10 T = 0.91TNI , S0 = 0.61.

1. Strong Cross-linking

Figure 3 shows the photo-contraction λ(Ĩ) as a func-

tion of the reduced light intensity Ĩ for a ratio of net-
work strands to rods µ̃ = ns/nn = 1/10. The fraction
of rods that are photo-active is A = 1/6 and the initial
order parameter S0 = 0.615. Following Eisenbach [21]
we have taken the ratio of step lengths appearing in
eqn (16-17) to be b/a = 5.5/9. The most prominent
feature of the curve is that it is non-monotonic; initially
λ decreases rapidly as Ĩ increases, but beyond Ĩ ≈ 2 the
trend reverses and λ begins to increase as Ĩ increases
further. The biggest contraction, λ = 0.86, corresponds
to Ĩ ∼ 2. This should be compared with the thermal
contraction expected when a nematic monodomain with
the same S0 is heated to isotropy, which gives λT = 0.56
as discussed previously. Evidently we manage to recover
approximately a third of the mono-domain contraction
when illuminating the polydomain. In order to explain
the behavior of the λ(Ĩ) curve it is instructive to plot

the functions θ(θ0; Ĩ) − θ0 (figure 4) and S(θ0; Ĩ) (fig-
ure 5) for various intensities. Focusing on the two plots

for Ĩ = 0.15 we see that θ−θ0 ≥ 0 for all θ0 (with equality
for θ0 = 0 and θ0 = π/2), i.e. all domains have rotated
away from the polarization direction. The nematic part
of the free energy is minimized if domains are perpendic-
ular to the electric field, this configuration also results in
domains preserving more of their order. Rotation away
from their initial orientations has an associated elastic
energy penalty, which is partially vitiated through me-
chanical relaxation. The resulting λ reflects these rota-
tions and corresponds to a compression along the electric
field. It is interesting to note that for a narrow range of
angles around θ0 = π/2 the order parameter increases,
that is S > S0. The overall contraction λ < 1 leads to
an expansion 1/

√
λ > 1 in the xy plane. This expan-

sion acts as an aligning field for the domains around π/2
increasing their order parameter.

Increasing the intensity to Ĩ = 1.05, the situation
is largely unchanged; the domains have rotated further

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3
q q- 0

q0

I=0.15
~

12.00

1.05

3.00

2.025

FIG. 4: The change in domain orientation, θ−θ0 as a function
of initial orientation θ0 for various intensities of polarized light
for an elastomer with µ̃ = 1/10.
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FIG. 5: The domain order parameter, S as a function of initial
orientation θ0 for various intensities of polarized light for an
elastomer with µ̃ = 1/10.

from the polarization direction. Again there is a range
of angles close to π/2 over which the order parameter
increases. Those domains which remain close to E have
suffered a larger reduction in S. Both effects, large ro-
tations and larger reductions in order lead to a larger
contraction along the electric field and hence a smaller
value of λ. Similar comments apply for Ĩ = 2.025.

Further increasing the intensity to Ĩ = 3 changes
things significantly. The order parameter is now less than
S0 for all domain orientations, even for those directed
well away from E. The optimal mechanical response for
those domains perpendicular to E is thus a contraction
(relative to their state at Ĩ = 2.025) along their own
director. They would thus want to expand along the
polarization direction. Conversely those domains close
to E suffer a larger change in S and their optimal me-
chanical response is a contraction along E. The overall
deformation remains a contraction along E, but we note
the contraction is now smaller than it was for Ĩ = 2.025,
i.e. the deformation λ is a non-monotonic function of the
incident intensity. Inspection of the plot of θ − θ0 for
this intensity reveals that domains have started to rotate
back towards their initial orientations. Finally increasing
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FIG. 6: Equilibrium deformation λ as a function of polarized
light of reduced intensity Ĩ for a weakly cross-linked elastomer
with µ̃ = 1/50.

the intensity substantially to Ĩ = 12, we see the trend of
recovery of initial orientation and return of λ to 1 has
continued. The order parameter has reduced yet further
for all domains and there is still an overall contraction
along E. However, relative to the situation at Ĩ = 3 the
system has expanded along E, i.e. domains have rotated
yet further back towards their initial orientations.

The non-monotonicity of the deformation gradient is
perhaps obvious in hindsight. Taking the limit Ĩ >> 1 in
eqn (5) we see that φ loses its dependence upon angle and
tends towards the constant φ → A; at sufficiently high
intensity all trans nematogens will be in their excited cis
state. Since φ is constant, the nematic part of the free
energy reverts to a standard Maier-Saupe form with a
renormalized J → J(1 − A) and nn → nn(1 − A). The
nematic energy no longer induces rotations away from E,
thus within the elastic free energy we must have θ = θ0.
Further, all domains will have the same order parameter
S = Sf . Global isotropy and volume conservation then
imply that λ = 1. In this limit it is not necessary that
all domains are isotropic, but simply that they have the
same, reduced order.

2. Weak Crosslinking

Increasing the number of nematogens per network
strand, i.e. reducing the effective shear modulus in our
model, results in much larger rotations away from the po-
larization direction. This weak linkage limit was treated
in a preliminary analysis [20], but without considering
the effect of the cis species on the step length tensors
eqns (16-17). Comparison shows these refinements have
little effect on the mechanics. Figure 6 shows the equi-
librium deformation λ as a function of incident intensity
Ĩ for a film with ns/nn = 1/50, S0 = 0.615, J = 5
and A = 1/6. Once again we see that the plot is non-
monotonic, but in the current case the curve has kinks
at around Ĩ = 5 and Ĩ = 11. The maximum contraction
is now larger, approximately λ ≈ 0.72, i.e. we recover

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

q
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I=0.225
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12.00
10.05
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0.2

0.6

1.0

1.4

FIG. 7: Domain orientation θ as a function of the initial ori-
entation θ0 for various intensities of polarized light on an elas-
tomer with µ̃ = 1/50.
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FIG. 8: Domain order parameter S as a function of the initial
orientation θ0 for various intensities of polarized light on an
elastomer with µ̃ = 1/50. Recall that the initial order was
S0 = .615.

roughly two thirds of the thermal contraction of a simple
monodomain system. Furthermore at larger intensities
the deformation λ is very close to unity, i.e. there is al-
most no mechanical response for large intensities. Figs. 7
and 8 show the new orientation θ and order parameter S
as functions of the initial orientation for several intensi-
ties.

At Ĩ = 0.225 there is very little reduction in the local
order parameters, but rotations of directors away from E
are quite large. One would expect this; since µ̃ is much
smaller the elastic resistance to rotation is now relatively
smaller compared with the nematic imperative to rotate.
The order parameter has not yet changed much; once
again it has increased for a small range of angles around
θ0 = π/2.

By Ĩ = 4.65 all domains are close to π/2, i.e. rota-
tions are very large for those domains initially close to
θ0 = 0. Since all domains are now close to π/2 contrac-
tion along E owing to rotation is essentially complete.
Increasing Ĩ then results in an increase in λ as the local
order parameters become increasingly depressed.

Increasing the intensity to Ĩ = 5.175, which is above
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the first kink in λ(Ĩ), we see interesting behavior in
both the orientation and the order parameter of the do-
mains. Domains initially close to θ0 which had rotated
to θ ∼ π/2 have now rotated back towards a cone close
to E. Since they are closer to E, the majority of the
photo-nematogens are in their cis state and thus domains
within this cone have small order parameters. The do-
mains which remain close to π/2 manage to maintain rea-
sonably large order parameters, but they do reduce, and
this reduction combined with the rotations mentioned
drives the deformation rapidly back towards λ = 1. The
first kink in fig 6 is the point where these back rotations
begin.

As Ĩ is increased further the cone widens, more do-
mains rotate back towards their initial orientations θ ∼
θ0. Thus at Ĩ = 10.05 most domains have reverted to be-
ing close to their initial orientation and have small order
parameters. There is still a narrow band of domains close
to π/2 and the order parameters of domains within this
band remain somewhat larger. The second kink in fig 6
occurs when back rotation is complete, and beyond this
point one has θ ∼ θ0 for all domains. This is the case by
Ĩ = 12. The order parameter for domains is now small
for all θ0, the system is essentially isotropic, there is no
preferred direction, and the elastomer returns to λ = 1.

B. Incident unpolarized light

We now consider unpolarized light incident normally
upon a sample, that is we consider light traveling along
the beam direction k shown in fig ??, the electric field
vectors being uniformly distributed in the plane perpen-
dicular to k. The average

〈

(E · u)2
〉

= Tr [〈E E〉E 〈u u〉u]

must now be recalculated, we have 〈E E〉E = E2

2 (z z +

y y) = E2

2 (δ − xx), while 〈u u〉u = Sn̂ n̂ + (1−S)
3 δ, and

thus:

〈

(E · u)2
〉

=
E2

3
[1 − SP2(cos θ)] , (20)

where cos θ = n̂.x - i.e. the angle θ is now that between
the director n̂ and the x direction. The fraction of cis
nematogens is therefore:

φ(S, θ, Ĩ) = A
Ĩ [1 − SP2(cos θ)]

3 + Ĩ [1 − SP2(cos θ)]
. (21)

We once again take the Taylor limit, that is we assume
each domain suffers the same uniaxial deformation. The
unique direction is now the beam direction, thus we
adopt the second of the deformation gradient tensors in
eqn (18).

The step length tensors l0 and l−1 are given by

eqns (13-17). Since the deformation gradient is isotropic
within the yz plane domains which make the same polar
angle with respect to the direction k but have different
azimuthal angles within the yz plane are mechanically
equivalent.

Our model predicts uniaxial extensions along the beam
direction k, fig ??, and corresponding contractions in the
plane of the film. Now the regions with director in the
plane of the sample rotate away from the yz plane causing
elongations along the beam direction in complete analogy
with the effects described above. Such distortions turn
out to be large in our model, i.e. comparable to those
suffered by cooling monodomains. Figure 9 shows the
equilibrium deformation gradient λ as a function of Ĩ for
the strongly cross-linked case µ̃ = 1/10. Figure 10 shows
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1.12

FIG. 9: The deformation λ along the beam propagation direc-
tion k as a function of the reduced intensity Ĩ of unpolarized
light on an elastomer with µ̃ = 1/10.

the result for the weakly cross-linked case µ̃ = 1/50. In

Ĩ

l

0 5 10 15
1.0

1.2

1.4

1.6

1.8

FIG. 10: The in-plane contraction λ as a function of the re-
duced intensity Ĩ of unpolarized light on an elastomer with
µ̃ = 1/50.

both cases we observe that the deformation λ > 1, thus
the film expands along the direction of light propagation
and contracts by 1/

√
λ in the yz plane. The mechanical

response for the weakly cross-linked case is somewhat
larger – as before, rotations away from the electric field
are bigger, leading to larger mechanical responses. The
form and features of these plots are readily explained
by the discussion in the previous section, in particular
by considering the θ(θ0) and S(θ0) relations at each Ĩ.
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FIG. 11: The helical director distribution for a simple
cholesteric (left). Initial directors are in the plane perpen-
dicular to x, the helix axis. Directors are induced to rotate
out of the transverse plane towards the helix axis, remaining
in the n

0
−x plane. A shear displacement u in the n

0
direction

varies with x. (right).

This analysis of unpolarized light may also be relevant
in polarized illumination but where scattering induces
depolarization through a thick sample.

That the response to unpolarized light is larger than
that to polarized light can be justified on purely geomet-
rical grounds: the n̂0 vectors are uniformly distributed
on the unit sphere. The polar axis is now k rather than
E. Being distributed with weight sin θ0dθ0, the majority
of the n̂0 and thus the rods associated with the domains
are in the equatorial region. The dye units are accord-
ingly most susceptible to the E vectors of the unpolar-
ized light, rather than formerly where the E vector was
uniquely along the polar axis of the distribution of di-
rectors. We now turn to an even more extreme case of
directors initially localized to an equatorial region:

C. Unpolarized light incident on a cholesteric
photo-elastomer

Consider a planar distribution of directors, all of which
are in the yz plane, figure 11 (left). This is essentially
the 2D equivalent of a standard polydomain. Practically,
such a distribution could be realized using a cholesteric
LCE with the helix axis parallel to the propagation di-
rection of the incident unpolarized light. If the sample
is thick compared with the pitch, one can adopt a coarse
graining procedure. Variations over the length of the
pitch can be integrated over and one is left with an ef-
fectively planar distribution of directors that would be
uniformly illuminated by unpolarized light. The unique
direction of the sample is then parallel to the propaga-
tion direction. Care is needed with this argument if the
incident light is of wavelength at or close to the stop
gap of the cholesteric. Then the component of incident
light of the same circular handedness as that of the LCE
is rejected by Bragg reflection (giving the characteristic
colors of a cholesteric). The other handedness will pene-
trate and may behave as envisaged in the coarse-grained
picture. The photonics of cholesterics is very subtle and
absorption adds still further complications [29] that re-
veal our picture above is a simplification. Cholesterics

often have pitch in the visible part of the spectrum, that
is their pitch is in the range ∼ 400−600nm. The nematic
polydomain films used by Ikeda [6] were 7µm thick; this
would give for an equivalent cholesteric sample ∼ 15 full
rotations of the helix through the sample. For our model
thus far to be applicable one must be careful to make sure
that while the sample is thick compared with the pitch
of the cholesteric, it is thin compared with the absorp-
tion length of the film, which can be tuned by reducing
the concentration of dye in the film, or illuminating with
light that isn’t quite on resonance for the trans →cis
isomerization. Since all domains are oriented initially in-
plane (i.e. θ0 = π/2 for all domains) we no longer need
to integrate over the initial orientation of domains.

Figure 11 (right) shows how the director can rotate
towards the helix axis, moving in the plane of the orig-
inal director and this axis. The plane in which n̂ ro-
tates itself rotates with advancing x. There are now
more strain possibilities than before. The deformation
gradient tensor λ

k
, eqn (18), can be augmented by λzx

and λyx shears associated with the displacements u in
the transverse plane shown in the figure. Such a shear is
advantageous since there is elongation along the diagonal
of the n̂0-x plane section of the sample which accommo-
dates the rotating director and its associated elongation.
The possibility of tilted (or conical) cholesteric elastomer
phases with associated shears is explored in the context of
changing order parameter near the thermal cholesteric-
isotropic phase transition [30, 31]. The spatially vary-
ing strain introduced is still compatible: the deformation
gradient element λij is ∂Ri/∂R0

j where R and R0 are
material positions in the target and reference states re-
spectively. Clearly the second derivative of position must
obey ∂λij/∂R0

k = ∂λik/∂R0
j which is here trivially sat-

isfied since the variation is in the x direction – we are
dealing with ∂λix/∂x where i = z, y. The balance be-
tween z and y displacements and hence components of
shear is best handled by taking coordinates based on z,
that is locally taking n̂0 along z. For clarity in this con-
text we denote the in-plane direction of n̂0 by the vector
m. A frame-independent method of writing this defor-
mation is[31]:

λ =
(

λ − 1/
√

λ
)

xx + 1/
√

λδ + λmxmx. (22)

The free energy density (reduced by nnkBT ) to be min-
imized is again that of (19), but with the uniaxial elonga-
tion λ augmented by shear as above, and with φ given by
eqn (21). The equilibrium deformation adopted is given
firstly by minimizing with respect to both λmx and λ.
Details are similar to those of [31] but with the differ-
ence that there S0 = 0 and that care with prefactors in
the free energy has to be taken in comparing with here.
As in [31] the optimal shear, given λ and θ is:

λmx =
(r − 1)sc

r − (r − 1)s2
λ (23)

where r is shorthand for the anisotropy l‖/l⊥, and anal-
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ogously for r0, and where s denotes sin θ and c is cos θ.
The various l factors are given in eqns (15-17). Return-
ing this shear to the elastic part of the free energy one
then minimizes this part over λ and obtains:

λ3
eq =

1

2r

(

r − (r − 1)s2
) (

r(r0 + 1) − r0(r − 1)s2
)

(24)

Returning this λ to the elastic free energy gives the scaled
energy:

fEL = 1
2 µ̃

l0⊥
l⊥

3

22/3r2/3

[

(

r(r0 + 1) − r0(r − 1)s2
)2

r − (r − 1)s2

]

.

(25)
In this free energy we have neglected the effects of Frank
elasticity. Departure from transverseness of the director
means that twist is reduced from its natural value that
attains before deformation, and thus a Frank penalty
arises. In many cholesteric elastomer problems Frank
energy seems to be important and experiment will deter-
mine whether the current problem in the weak crosslink-
ing limit should be revisited.

We can place limits on the magnitude of the deforma-
tion achieved. The largest deformation will occur if the
domains rotate such that they are parallel to the x-axis,
i.e s = 0, c = 1 and that response will be maximized if
the rotation occurs without reducing the order parame-
ter, i.e. when one rotates a still-elongated system. Tak-
ing S = S0 for l‖ and l⊥ in (24) gives a λ3

1 = 1
2r0(r0 +1),

that is:

λ1 =

[

1

2

(

1 + 2S0

1 − S0

) (

2 + S0

1 − S0

)]
1

3

. (26)

For S0 = 0.615 this yields λ1 = 2.7, a significant expan-
sion. Indeed λ1 is greater than the elongation λr asso-
ciated with the rotation of a monodomain by 90deg at
constant order parameter. This apparently paradoxical
situation arises because here the perpendicular contrac-
tions are forced to be equal by our (Taylor) assumption
about polydomain response. The perpendicular strains
are not optimal for any of the rotating domains and hence
the elastomer is squeezed out along the cholesteric helical
axis.

We can also predict the high intensity value of λeq.
At high intensities φ from eqn (21) loses any angular
dependence. The elastic energy (25) can be simply min-
imized over θ where it appears explicitly since there is
no hidden θ dependence in S from φ in r. The result is
θ = θ0 = π/2. Setting s = 1 in eqn (24) then shows that

λ in the high intensity limit is λ2 = [(r0 + r)/(2r)]
1/3

.
The high intensity response falls in the interval λ2 = 1
for r = r0 corresponding to temperatures and fractions
A low enough that high intensities have little effect on

order, to λ2 = [(r0 + 1)/2]
1/3

where the intensity is suffi-
cient to convert all domains to the isotropic state. Thus
a bound on the high intensity value of the deformation
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FIG. 12: Upper: The elongation along the helical axis for a
cholesteric elastomer of µ̃ = 1/10 illuminated with unpolar-

ized light of intensity Ĩ. Lower: The associated rotation of
the director away from the yz plane.

gradient is λ2, given by:

λ2 =

[

1

2

(

2 + S0

1 − S0

)]
1

3

. (27)

For S0 = 0.615 this gives λ2 = 1.5.
The response of cholesteric photo elastomers also de-

pends on whether they are strongly or weakly crosslinked.
The deformation and director rotation of a strongly
linked network (µ̃ = 1/10) as a function of incident inten-
sity are shown in figure 12. The variation of domain ori-
entation and order parameter is the same for all domains
since they all start with polar angle π/2 with respect
to the propagation direction. Elongation along the helix
axis initially increases, with domains departing briefly
and weakly from the yz plane. The twist energy does
not change much and the neglect of Frank effects is cer-
tainly appropriate. On the return of directors to the
yz plane, the elongation thereafter increases more slowly
and monotonically. Going to significantly larger intensi-
ties than is shown in the plot, the deformation asymp-
totes towards λ2. Through the same interval of intensity,
the order parameter of the domains decreases slowly from
the initial value S = 0.61 to S ∼ 0.3.

The situation is significantly different if we increase the
number of nematogens per network strand. Figure 13
shows the elongation, director orientation and order as
functions of Ĩ for µ̃ = 1/50. Initially elongation is very
rapid, associated with rapid director rotation with only
slow reduction in the order parameter. Very soon there
is a jump in elongation to close to the maximal possi-
ble elongation λ1, upper dashed line in the elongation

electronic-Liquid Crystal Communications September 30,  2008

http://www.e-lc.org/docs/2008_09_24_10_07_43



12

l
l1

l2

1.0

1.4

1.8

2.2

2.6

1.4

1.8

2.2

2.6

0 0.1 0.2 0.3
1

q

0.2

0.6

1.0

1.4

0.2

0.6

1.0

1.4

0 0.1 0.2 0.3

0.2

0.4

0.6

0.602

0.606

0.61

0.614

0.618S
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FIG. 13: Upper: Elongation λ for a cholesteric elastomer with
µ̃ = 1/50 illuminated by light of reduced intensity Ĩ. Middle:
Director angle θ. Lower: Order parameter S. Insets show the
rapid variation and jumps at low intensities.

figure, the failure to attain the maximum being because
the order parameter is very slightly reduced already. The
jump is because of the jump in the director (see inset to
the middle figure) away from the transverse plane to be-
ing along the helix axis. Twist is eliminated. Because
the jump is away from the electric vector, the order pa-
rameter recovers somewhat. At higher intensities around
Ĩ ∼ 6.5, because of the reduction in order parameter the
directors rotate back to the transverse plane and there is
a concomitant reduction in the order parameter since the
directors are again close to the electric vector. The elon-
gation is reduced to close to the high intensity limit λ2,
lower dashed line, which is then approached from below
at high Ĩ.

IV. SUMMARY AND CONCLUSIONS

We have modeled the response of nematic polydomain
photo-elastomers to polarized and unpolarized light. Po-
larized light lead to contraction along the polarization
direction, a very useful control of mechanics that has

been seen in experiments on both nematic glasses and
elastomers. We draw a distinction between weakly
crosslinked elastomers which display large director rota-
tions and hence qualitatively differing regions of mechani-
cal response, and strongly linked systems where rotations
are inhibited by the network and where responses, while
still large, are not so big as in the weak case. We predict
that larger responses are achieved for the same elastomer
if they are irradiated with unpolarized light. Now the
uniaxial axis is one of elongation and is along the prop-
agation direction. This configuration is of perhaps the
greatest applicability. It has been proposed [17, 18] that
localized structures can be optically written into films
of photo-elastomer on rigid substrates. In particular it
would be useful to have raised bumps or dips in the sur-
face topography which would depend on an incident spot
of light but not on the underlying director if it were in-
plane. Polydomain systems that we have described offer
this opportunity.

Finally we examined the potentially largest response,
namely from a 2-D system of domains as realized in
cholesteric photo-elastomers. The response predicted for
cholesterics is complex. It is possible that the neglect
of Frank effects and avoiding the Taylor approximation
might modify these subtleties.
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an extreme response, Prof. P. Palffy-Muhoray for use-
ful discussions, and Prof. E.M. Terentjev and Dr. J.M.
Adams for a critical reading of our manuscript.

APPENDIX A: UNIVERSAL FUNCTION

The function g0(x) ≡ ∂ lnZ(x)/∂x given below eqn (9)
is explicitly:

g0(x) =

∫ 1

0
dy

(

3
2y2 − 1

2

)

exp
{

3
2y2x

}

∫ 1

0
dy exp

{

3
2y2x

}

= −1

2
− 1

2x
+

1

2x

√

3x

2

exp
(

3x
2

)

∫

√
3x

2

0
exp(y2)dy

,(A1)

the latter being for x > 0. It can be further simplified by
rewriting the final term as F(x), defined by:

F(x) =
1

2x

2 exp(3x/2)√
π

√

3x/2

erfi(
√

3x/2)
, (A2)

where erfi(y) is the imaginary error function [32]. Thus:

g0(x) = −1

2
− 1

2x
+ F(x). (A3)

One can extend this result for x < 0 using analytic
continuation on the function F(x) for imaginary argu-
ments. Many routines exist for numerically calculating

electronic-Liquid Crystal Communications September 30,  2008

http://www.e-lc.org/docs/2008_09_24_10_07_43



13

S

q=0 p/2

0.1 0.15 0.2 0.25

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

˜˜ I=0I=10

k T JB /

FIG. 14: The equilibrium order parameter S as a function of
kBT/J within the standard Maier-Saupe model, and within
our modified version for domains illuminated with polarized
light of intensity Ĩ = 10 aligned both parallel and perpendic-
ular to the electric field E.

the imaginary error function quickly and accurately. For
x → −∞ the function g0 tends towards −0.5 while for
x → ∞ it tends towards 1. It has the sigmoid shape
required to yield a first order phase transition applying
self-consistency graphically.

The inverse function g−1
0 (S) can easily be achieved nu-

merically and gives us the mean field h = kBTg−1
0 (S) as

a function of the order parameter S. Finally it is trivial
to show that the partition function Z0(h/kBT ) can be
written as a function of S and is given by:

Z0(S) =
exp(g−1

0 (S))

1 + g−1
0 (S)(1 + 2S)

, (A4)

thus all terms in the Maier-Saupe free energy involving
the mean field h within the nematic free energy can be
re-written as explicit functions of the order parameter S.

APPENDIX B: VARIATION OF NEMATIC
ORDER WITH TEMPERATURE AND

ILLUMINATION

The equilibrium order parameter S obtained by mini-
mizing this free energy is plotted as a function of kBT/J
in figure 14 for several interesting cases. Firstly the plot
for Ĩ = 0 simply gives the standard Maier-Saupe result,
whereby there is a first-order phase transition from a low
temperature nematic phase (S > 0) to a high tempera-
ture isotropic phase (S = 0). The transition occurs at
kBTNI/J = 0.22, and at this point the value of the order
parameter in the nematic phase is S = 0.43. Also shown
are plots for a relatively high intensity Ĩ = 10, both for
a domain with director along E (θ = 0) and perpendic-
ular to E (θ = π/2). In both these latter cases we have

taken the fraction of nematogens that are photo-active
A = 1/6. It is interesting to note that for both of these
plots the apparent nematic-isotropic transition tempera-
ture TNI has reduced. Furthermore TNI is lower for do-
mains oriented with the field rather than perpendicular
to it. Finally we note that for sufficiently small values
of kBT/J illumination of domains perpendicular to E
results in an increase in the order parameter relative to
the standard Maier-Saupe result. The order parameter
S is an average over the trans and photo-inert nemato-
gens only. For a domain with director perpendicular to
the field, nematogens perpendicular to the director and
along the field serve to lower S. Illumination preferen-
tially removes these nematogens, thus increasing S. One
can also define a bulk order parameter Q = (1 − φ)S
which takes into account the reduced number of nemato-
gens contributing, and within our model this parameter
is always smaller than the canonical Maier-Saupe result.
The bulk order parameter Q is the value measured by
bi-refringence. By contrast NMR measures the order S
of the nematic species. It is interesting to note that the
transformation Q = (1 − φ)S renders eqn (11) back into
the usual MS form.

APPENDIX C: THE DEPLETED FREELY
JOINTED ROD MODEL

The freely jointed rod model gives a simple connection
between the step-length tensor and the order parame-
ter tensor S. For the initial tensor l0 we assume that

the polymer chain between cross-links consists of rods
of length a connected to each other by flexible joints,
i.e. there is no coupling between the orientation of one
rod and its neighbours. The span vector is given by

R0 =
∑N

i=1 ai where ai is a vector of magnitude a point-
ing along the direction of the ith rod. The step-length
tensor l0 is given by:

l0 =
3 〈R0R0〉

Na
. (C1)

Inserting the above form for R0 into eqn (C1), we ob-
tain:

l0 =
3a2N 〈â â〉

Na
= a(δ + 2S), (C2)

where we have used eqn (2) to replace the average 〈â â〉.
Assuming S is uniaxial about a director n̂0 with scalar

order parameter S0, and using eqn (2), gives:

l0 = a(1 − S0)

[

3S0

1 − S0
n̂0 n̂0 + δ

]

(C3)

The current step-length tensor l has a slightly more

complicated form than the original value l0 since when

rods bend, not only do they cause a change in the lo-
cal order parameter, but they also change their step
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length. We assume the fraction of nematogens in the
cis state is φ, thus the fraction of trans or simply photo-
inert rods is (1 − φ). As above, we model the polymer
chain between two cross-links as a random walk, how-
ever the chain now consists of two different monomers,
the trans /photo-inert rods described by a vector a and
the cis rods described by a vector b. The span vec-

tor of the chain is now given by R =
∑(1−φ)N

i=1 ai +
∑φN

j=1 bj , where N is the number of monomers between
the cross-links. The cis molecules are assumed to be
be isotropically disposed, thus

〈

bi bj

〉

= (b2/3)δδij , while

the trans /photo-inert rods are uniaxially ordered, thus
〈

aiaj

〉

= (a2/3)δij(δ + 2S). Evaluating the average

〈R R〉 = (1 − φ)N(a2/3)(δ + 2S) + φN(b2/3)δ. Extract-

ing a factor of Na (the arc length for the unirradiated
polymer that was extracted in defining l0 in (C1)), the

current step-length tensor is then given by:

l = a
[

(1 − φ)
{

(1 − S)δ + 3Sn̂ n̂
}

+ φ(b/a)2δ
]

(C4)

where we have substituted for S from eqn (2) assuming

a uniaxial form. The forms of the various step lengths l
given in the text can be read off either from eqn (C3) or
from (C4). Finally in calculations we require the inverse
of the current step-length tensor, that is l−1. Inverting

eqn (C4) then gives:

l−1 =
1

a [(1 − φ)(1 − S) + φ(b/a)2]
×

[ −3S(1 − φ)

(1 + 2S)(1 − φ) + φ(b/a)2
n̂ n̂ + δ

]

. (C5)

Only if φ = 0 does (C5) become a standard l−1.
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