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Characteristics of electroconvection patterns have been studied in a homeotropic nematic 
liquid crystal with unusual combination of material parameters (negative conductivity and 
positive dielectric permittivity anisotropies). The morphological phase diagram has been 
explored. Two distinct types of pattern dynamics have been detected: losing autocorrelation of 
the pattern during temporal evolution due to spatio-temporal chaos at onset and domain 
coarsening of a grid pattern. 
  
 

I. Introduction 

Complex patterns observed in nature have attracted a considerable interest recently 
[1][2][3][4]. The formation of such patterns is usually associated with the instabilities of systems 
occurring under non-equilibrium conditions. The patterns observed may have very complicated 
spatiotemporal behavior. A spectacular example of such phenomena is electroconvection (EC) in 
nematic liquid crystals (NLCs). 

EC is typically observed in nematics possessing negative dielectric and positive 
conductivity anisotropies (εa < 0, σa > 0). Depending on easily variable control parameters (as the 
rms value and the frequency of the applied voltage) a rich morphology of patterns can be created. 
The preferred direction  (x) defined by the surfaces (x-y plane) in planarly oriented cells results 
in well ordered roll patterns at the onset which are either stationary or move with a constant 
velocity (traveling waves), both have long correlation times. Correlation is typically lost faster at 
higher voltages where the pattern becomes dynamic due to the formation and motion of defects 
(dislocations) marking the path to chaos. 

In contrast to the planar case, in homeotropically oriented cells EC is a secondary 
bifurcation occurring above a bend Freedericksz transition. In the Freedericksz distorted state the 
director bends away from z towards an arbitrary direction in the x-y plane and breaks the 
rotational symmetry of the homeotropic arrangement spontaneously. The in-plane director c is 
not prescribed externally (when no magnetic field is applied) thus c is a slowly varying function 
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of x and y. This director distribution serves as a ground state with a Goldstone mode of slow 
dynamics and zero growth rate which interacts with the EC patterning mode at its onset [5]. 
Consequently one obtains spatio-temporal chaos (STC), often called soft mode turbulence [6], 
already at the onset of EC.  This type of chaotic behavior has been devoted considerable 
attention to in recent years, both theoretically [5] and experimentally [7][8][9]. 

There exist, however, a few nematic liquid crystals which have εa > 0, σa < 0 (i.e. 
opposite signs of the anisotropies compared to the NLCs mentioned above). It has been hinted in 
the literature [10] that these substances may also exhibit electrohydrodynamic instabilities. 
Recently it has actually been proved [11][12] that at homeotropic orientation of NLCs with such 
an unusual combination of the material parameters the basic Carr-Helfrich mechanism of EC is 
fully operational, consequently it facilitates a direct transition from the undistorted homeotropic 
state to the electroconvecting one, without the necessity (and existence) of a preceding 
Freedericksz transition. Thus the azimuthal degeneracy due to the surface alignment is broken 
during the onset of the EC instability which classifies this system to another symmetry class. 

In this paper we present a detailed analysis of the pattern morphology and the dynamic 
response of such an unconventional NLC. 

 
II. Experimental setup 

The experiments were done in the nematic phase of a "swallow-tailed" compound, p-
(nitrobenzyloxy)-biphenyl [13]. The phase sequence is as follows: I – 110 0C – N – 94 0C -
Sm C – 75 0C – Sm F – (66.5 0C – Sm X) – 69 0C – Cr. The structure of the monotropic 
(showing up only on cooling) smectic X phase below the smectic F has not been identified. The 
substance has εa > 0 and σa < 0 in the whole nematic range [11]. 

Ready made homeotropic cells of various thicknesses (d = 9, 11 and 15 µm) were used in 
the conventional sandwich geometry. The cells were driven by sinusoidal voltage. The patterns 
were observed with a Leica DM RXP polarizing microscope and the temperature was controlled 
using an Instec hot-stage with an accuracy of 0.05oC. EC measurements were carried out at 96oC 
and 98oC. The images were recorded by an Optronics MicroFire digital camera with 32 bit color 
depth and were stored with a spatial resolution of 50x1000 pixels for autocorrelation and 
1200x1600 pixels for coarsening measurements respectively. For further processing the recorded 
snapshots were converted to 8 bit gray-scale images. 

 
III. The homeotropic phase diagram 

The conductive range up to the cutoff frequency ωc has been studied where EC sets in 
directly from the homogeneous state via a forward bifurcation, in contrast to the conventional 
(σa > 0, εa < 0) homeotropic case. As the   Freedericksz transition is absent, the rotational 
symmetry is broken only at the onset of EC, the director perturbation (bending away from z) is 
an inherent part of the EC mode. 

The morphological phase diagram is depicted in Fig.1 where the threshold voltage Uc is 
plotted against the dimensionless frequency ωτq (τq = ε0 ε⊥/σ⊥ is the charge relaxation time). 
Undulated zig-zag (ZZ) rolls are observed at very low frequencies at onset [11]. Increasing the 
frequency the pattern consists of areas of regular rolls and overlapping regions with two almost 
orthogonal roll directions (squares) with a well defined wave number qc(ω) (Fig. 2a). The 
structure as a whole is, however, disordered, there is a spatial variation of the direction of the 
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wave vector as a consequence of the absence of a preferred direction in the x-y plane due to the 
homeotropic director anchoring. The size of the overlapping regions increases with the frequency 
up to a point ω* with ω*τq = 0.56 (the Lifshitz point) [11] above which only squares are seen. 
Their orientation preserves the undulated character of the rolls and the slow spatial variation in 
the x-y plane, therefore are called soft squares (Fig. 2b). 

 
Figure 1 The morphological phase diagram at homeotropic orientation (R&S - rolls and squares, SS - soft 
squares, HS - hard squares)  

 

The onset structure shows a slow, persisting dynamics for frequencies below ω*. This 
involves a continuous change in the distribution of the direction of the wavevector. The ZZ 
character as well as the typical size of the domains persists with time. This dynamics will be 
addressed in the next section in more detail. 

Increasing the voltage above threshold at low frequencies we observe a shrinking of the 
size of the regular areas and the dynamics gets faster. The roll pattern gradually evolves into the 
turbulent regime with increasing voltage. At high frequencies the soft square pattern first 
becomes better oriented due to the reduction of the number of dislocations then (still at small ε) 
transforms into another pattern, which contains domains of well ordered square grids separated 
by sharp domain boundaries. This pattern, called hard squares (Fig. 2c), persists for high 
voltages, until the appearance of spatio-temporal chaos. There is an intermediate frequency range 
(below ω*) where the same hard square pattern develops from the rolls and squares at increasing 
voltages as seen in Fig. 1. 
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Figure 2 The morphologies observed a; - rolls and square (ωτq = 0.233, ε = 0.19), b; - soft squares (ωτq = 0.612, 
ε = 0.04),  c; - hard squares (ωτq  = 0.583, ε = 0.47)  

 

A quantitative comparison of the frequency dependence of the threshold voltage Uc(ω) 
and the onset wavenumber qc(ω) with the standard theory [14]  based on the Carr-Helfrich 
destabilization effect has yielded a very good agreement [11]. 

 
IV. Pattern dynamics at threshold 

The time evolution of the patterns was studied as a function of frequency and the 

dimensionless control parameter 12
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After application of the voltage corresponding to the chosen values of ε the pattern 
developed fully within a couple of seconds. While keeping ε constant subsequent two-
dimensional snapshots have been recorded in every 1 s for a period of 300 s. An arbitrary line, 
the same in all pictures, was defined as the x-axis. 

For quantitative characterization of the pattern dynamics a local autocorrelation function 
C(x,t) of the intensity along the line I(x,t) was computed according to the formula 
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are the standard deviations, and ⋅  indicates averaging over the running variable t0. The 

autocorrelation function  was finally obtained by averaging over x. )(ˆ tC
Figure 3 shows the ε dependence of the autocorrelation function  for one particular 

frequency (ωτ
)(ˆ tC

q = 0.047) where rolls and squares were observed. The autocorrelation function 
diminishes (what is expected for a developed chaotic regime) and its decay gets faster with 
increasing ε. 

The correlation time τc was determined by least squares fitting of the autocorrelation 
functions with a single exponential decay . )/exp()(ˆ

0 ctCtC τ−⋅=
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Figure 3 Autocorrelation function for ωτq = 0.047 for four different ε  (0.035, 0.048, 0.072 and 0.109). 

 
Figure 4 exhibits τc

-1 versus ε for different frequencies covering two regions: the rolls and 
squares (ωτq < 0.56) and the squares only (ωτq > 0.56). 

Experimental data may be well fitted by the law τc
-1 ∝ ε at small ω, which indicates a 

direct transition to STC from the homogeneous state [15]. At higher ω (above ω*) the structure 
is stationary at onset up to ε = 0.05. 

 
Figure 4 Inverse correlation time τc

-1 versus ε. 
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Increasing the frequency up to ω* one observes rapidly decreasing slopes which implies 
an increase of the correlation times. For frequencies above ω* the slope saturates. This behavior 
is similar to the results on conventional NLCs [9]. In Fig. 5 the slope (τcε)-1 is shown as a 

function of the reduced frequency 
*ω

ω . For patterns dominated by rolls (low frequencies, 

5.0
*
<

ω
ω ) the slope is 5 times higher than for the squares ( 1

*
>

ω
ω ). For 1

*
>

ω
ω  the slope 

becomes almost frequency independent. Moreover, the pattern at onset seems to be stationary as 
indicated by the finite 0≠ε  intersection of the last fitted line in Fig. 4. Such behavior was also 

found in the normal roll regime of conventional NLCs [9]. Above 25.1
*
>

ω
ω  the measurement 

of τc(ε) meets difficulties as the soft squares exist in a narrow ε region only (see Fig.1.). When 
ωτq is slightly above 0.56 this ε existence range is about 0.2 but with increasing frequency this 
value decreases down to ε ≈ 0.05, thus leaves too short ε range for reliably measuring τc(ε).  

 
Figure 5 (τcε)-1  as a function of the reduced frequency ω/ω*. Solid squares refer to the results obtained for 
cells of thickness -15 µm and open squares for 9 µm (after re-scaling -see text).  

 

The characteristic time τ for the decay of the EC patterns is known to be thickness 
dependent. As a smaller thickness results in higher vertical (along z) director gradient and thus 
higher restoring torque, a faster relaxation is expected. Calculations predict τ ∝ d2 dependence. 
Our situation is, however, more complicated as besides the thickness (which sets the wavelength 
as well) there is another characteristic length La for the azimuthal variation of the pattern 
orientation. Though no theoretical prediction is known yet for this geometry, one might expect 
that lateral director gradients should also affect the correlation time τc. Unfortunately La is out of 
control at present, so only the thickness dependence could be checked. Measurements on cells of 
three different thicknesses indicated a τc ∝ d2 dependence thus indicating a dominance of d and 
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negligible effect of La. In Fig. 5 actually the results obtained for cells of d1 = 9 µm (open circles) 
and d2 = 15 µm (squares) are combined using a re-scaling by d1

2/d2
2 for τc(d2). 

 
V. Coarsening of the square domains 

Losing correlation is not the only form of pattern dynamics. Occasionally, on the 
contrary, the pattern becomes more ordered in time, i.e. coarsens. This phenomenon has been 
observed in various systems, though only a few experiments on this field are known yet. They 
suggest that after a long time period the domain growth/shrinking can be characterized with a 
power-law, but the value of the growth exponent depends on the measurement scheme (on the 
choice of the measure of coarsening dynamics) [16][17][18][19] which may indicate the 
necessity of multiple correlation length scales [20]. Simulations of the potential and non-
potential forms of the Swift-Hohenberg equation [16][18][21] have suggested a growth of t1/5 for 
the characteristic length of domains obtained from a structure function S(q) in the Fourier space 
[16][18]. However, in the case when the growth exponent is determined from the orientational 
correlation function, t1/4 is expected for potential dynamics [16][18] and t1/2 for a non-potential 
one [16]. 

Our electroconvecting nematic with its hard square pattern is another example of driven 
systems approaching a steady non-equilibrium state via coarsening. Jumping to the proper ε the 
pattern initially consists of small domains of perfectly ordered two-dimensional square grids with 
different orientation, separated by domain walls (Fig. 6a). The domain-walls are moving 
allowing the growth of some domains on the expense of shrinking ones over a period of minutes, 
resulting asymptotically in a very large ordered region (Fig. 6b). 

 
Figure 6 Coarsening of the square pattern at T=98 oC,  ωτq  = 1.63, ε = 0.21.  a; after 1 minute, b; after 89 
minutes. 

 

This evolution of patterns was monitored by recording a sequence of subsequent snapshot 
images and focusing on the orientation of the squares. A two-dimensional fast Fourier 
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transformation (FFT) was applied to the same (512x512 pixels) region of all images and the 
azimuthal distribution was calculated at the radius qc, the dominating wavenumber of the system. 
As a measure of the order the half width δw of the peak in the azimuthal distribution was taken. 

 
Figure 7 Plot of log(δw) versus log(t) for ωτq = 1.167 and ε = 0.2. The fitted line has a slope of  -0.49±0.02. 

 

Figure 7 exhibits a log-log plot of δw versus time for ωτq = 1.167 and ε = 0.2. Data 
indicate power law dependence after some initial transient period. Fitting a straight line for the 
final decade of time results in a slope of -0.49±0.02, which indicates a growth exponent of 
0.49±0.02. After the time corresponding to the last data points the area selected for the FFT 
contained only two domains. Other measurements at different ω yielded similar values (-
0.45±0.02, -0.46±0.06, -0.50±0.10). This agrees quite well with the prediction for non-potential 
dynamics [16]. 

VI. Conclusions 

A direct transition from the homeotropic state to electroconvecting patterns has been 
observed in a nematic liquid crystal with εa > 0, σa < 0. Exploring the complete phase diagram in 
the (U, q) space three distinct morphologies, rolls and squares, soft squares and hard squares 
have been identified.  

For the first type (frequencies below the Lifshitz point ω*) the existence of spatio-
temporal chaos at onset has been proved by measuring the autocorrelation of the pattern. In the 
case of the hard squares a domain coarsening has been observed which follows the t1/2 law.  
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