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We present a fully non-linear model of the elasticity smectic-A elastomers, and compare our results
with a wide range of experimental observations: extreme Poisson ratios, the in-plane modulus, the
modulus before and after threshold to layer rotation in response to stretches along the layer normal,
the threshold strain, the characteristic and singular rotation of layers after the threshold. We
calculate the X-ray scattering from rotating layers and compare with available data. The model is
derived in two ways: from geometrical constraints imposed by layers on a nematic elastomer, and
from application of statistical mechanics to a microscopic model of the effect of crosslink points
confined in a corrugated potential.

PACS numbers: 61.41.+e,61.10.Eq,81.40.Jj,61.30.Cz,46.25.Cc

I. INTRODUCTION

Elastomers are crosslinked networks of polymer chains.
They are capable of huge distortions, hence their elastic-
ity is non-linear for both geometrical and material rea-
sons. They are soft solids in the sense that their shear
moduli are much less than the bulk moduli whereupon
they deform at essentially constant volume. This third
source of non-linearity makes still further inadequate any
linear continuum picture of most rubber elastic phenom-
ena.

We present a fully non-linear, statistical mechanical
theory of elasticity of particularly complex elastomers –
smectic-A (SmA) rubbers. Such elastomers have 1-D lay-
ering order superimposed upon the nematic rubber elas-
ticity of the underlying matrix. Thus the material is itself
complex in that it is both rubbery (with the capacity for
elastic non-linearity mentioned above) and has an inter-
nal degree of freedom, its nematic ordering director. Its
nematic order is independently mobile but also coupled
to the solid matrix. This is possible since a rubber is
liquid-like at the local molecular level though it cannot
flow in any macroscopic sense. The director can be in-
duced to rotate by imposed strains. Indeed its motion
can cause some special shape changes to occur at zero
energy cost. These have been observed over huge ranges
of strain and have a characteristic, universal strain-angle
dependence. We shall see strain-induced director motion
but not soft elasticity – the added constraint of the layers
which are coupled to the solid matrix and to the director
make soft trajectories impossible in SmA. A later paper
will deal with SmC elastomers which can deform softly
because of their lower point symmetry.

Experiment can give clear guidance for theory in the
limit of strong coupling between smectic order and the
rubbery matrix. Stretching along the layer normal (see
Fig. 1(a)) of an elastomer with strong smectic effects [1]
initially has a higher associated modulus, comparable to
the smectic layer modulus B ∼ 107 − 108Pa observed in
liquid SmA. This is significantly less than the bulk mod-
ulus of rubber and hence distortions still have constant
volume. Thus the Poisson ratios are initially (1/2, 1/2)
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FIG. 1: Imposed deformation; a) stretching parallel to the
layer normal, b) stretching perpendicular to the layer normal,
c) shearing the layers in their plane and d) shear out of the
planes.

associated with volume-conserving contractions in the es-
sentially fluid (rubbery) smectic planes. On the other
hand B is almost 102 times larger than underlying rub-
ber’s shear moduli which themselves scale with the sin-
gle (shear) modulus µ ∼ 105 − 106Pa characterising any
isotropic state of the elastomer. At relatively small strain
on a rubbery scale (∼ 5%) there is an instability which
causes the layers to start rotating in order to relieve the
stiff layer dilation deformation in favour of lower cost rub-
ber distortions at constant layer spacing. This response is
the rubbery equivalent of the classical instability to avoid
layer dilation predicted and observed in liquid smectics
by Clark and Meyer [2] and which has analogy to the
Helfrich-Hurault instability found in liquid cholesterics.
We shall call this the CMHH instability and return to it
at some length in section III A, section III E 1 (where we
give a geometrical explanation) and in section IVD. Sec-
tion IV makes contact with experiment; we analyze the
elastic response and the X-ray data [1] but, unlike these
authors, conclude that the layers rotate rather than melt.
This is consistent with the fact that smectic ordering is of
the order of 102 times more rigid than the rubbery scale.
The rotation is seen both in X-rays and optically. When
the smectic modulus is large, one can think of smectic
elastomers as being two-dimensional but where the ori-
entation of these two dimensions can be mobile.

Although chains are highly mobile (SmA elastomers
can suffer huge reversible deformations), the above evi-
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dence shows that crosslinks, which create and define the
rubbery solid, are strongly pinned by smectic layers. It
is not possible to stretch along the layer normal and have
the crosslinks glide through layers. The associated modu-
lus is therefore not rubbery; it is rather that of the smec-
tic layers. In section V we calculate from a molecular
model the consequences of this pinning: (i) the coupling
between layer and matrix displacements characterised by
the modulus Λ, first introduced in [3], which we estimate;
(ii) the strict geometrical constraints when deformations
are imposed – crosslinks must respect the layer positions
and hence the matrix must sense layer spacings; (iii) the
layer normal and the director are rigidly identified with
each other.

The second example of a constrained response is
stretching in one direction in the plane, see Fig. 1(b).
Contraction is only in the perpendicular direction in the
plane and not at all along the layer normal. Hence for
small deformations where the Poisson ratios are defined,
they take the extreme values (1, 0) as is known from the
remarkable experiments of the Finkelmann group [1, 4].
Analogous response continues into the non-linear regime
and the associated modulus is rubbery. Whether defor-
mations are large or small, we essentially have a 2-D rub-
ber when smectic-matrix coupling is strong.

The third and fourth deformations we shall consider
are imposed shears λxz and λzx, Figs. 1 (c) and (d),
where z is the layer normal and x a direction in the smec-
tic planes. These two shears have very different effects
on the layer orientation and spacing. We conclude sec-
tion III with a general decomposition of deformations
into components that are differentiated in their effect on
the layer normal.

II. LARGE STRAIN MODEL OF SMECTIC A
ELASTOMERS.

Linear continuum models, using symmetrised strain
tensors, for smectic elastomers were developed many
years ago [3, 5–7]. They can offer guidance, for in-
stance through the use of group-theoretical analysis of
terms permitted in their invariant free energy. But such
theories suffer the essential limitations of linearity men-
tioned above. Non-linear elasticity using non-linear sym-
metrised strain tensors can be also be developed [8]. One
then expands the free energy phenomenologically, say to
quartic order. This is sufficient for many purposes, for
instance to govern instabilities that arise at quadratic
order.

We shall retain Cauchy deformation gradient tensors
λ that directly show the shape change of the body and

retain information (because they are not symmetrised)
of any rotations of the reference space. It is convenient
to record shape changes of a reference space considered
after any phase transitions (with e.g. spontaneous elon-
gation) might have taken place. These are the as-imposed
shape changes. [There are however deep theoretical rea-

sons that are the basis of soft elasticity [8, 9] for taking
deformations with respect to the body before symme-
try breaking – see also [10] for an overview.] Recording
rotations is also useful since they can be with respect
to internal degrees of freedom, for instance the director.
Such relative rotations enter the nematic rubber elastic
free energy, see for instance a continuum example [11]
and are also central to nematic elastomers at large de-
formations [10]. We retain the essential ideas of nematic
rubber elasticity but take account also of the rigid con-
straints added in by coupling to the smectic layers. We
thus follow the strategy of earlier continuum approaches,
in particular that of [7] which gives molecular estimates
of linear moduli and also discusses relative rotations in
the smectic context. Here however we suppress the free-
dom of layers and the nematic director to relatively ro-
tate. Our rigidly coupled smectic layers have the director
rigidly identified with the layer normal (b⊥ → ∞ in the
notation of [7]). Thus there will be no partial renormal-
isation of the shear modulus that would otherwise lead
to soft elasticity in a nematic system ([7] discusses the
smectic effects on this renormalisation).

We defer (to section V) a molecular model that shows
how chains strongly coupled to the layer system generate
the rigid constraints we study in this section.

A. Layer constraints and smectic energy

If layers are rigidly embedded in the network, then
deformations λ will induce layer spacing changes, which
we now calculate in a frame independent form, in order
to find the associated smectic energy (proportional to the
layer modulus B).

Any material point in the layer deforms as x → λ · x.
Any two perpendicular unit vectors in the plane of the
smectic layer, k and m say, define the layer normal n0 =
k×m. Since the vectors deform with the plane, the cross
product of the deformed vectors defines the new normal,
n:

n =
(λ · k)× (λ ·m)

|(λ · k)× (λ ·m)| (1)

as illustrated in Fig. 2.

k m

mk

λ λ k.
λ. m

λ k.

λ. m

FIG. 2: The normal to the layer deforms when the vectors in
the layer deform according to x → λ · x.

Writing Det(λ)εijk = εαβγλαiλβjλγk, using Det(λ) = 1,
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and multiplying from the right by (λ−1)kp yields:

εαβpλαiλβj = λ−1
kp εijk = λ−T

pk εijk. (2)

We denote by λ−T the transpose of the inverse of λ (i.e.

the cofactor tensor, since Det(λ) = 1). Substituting (2)
into the cross products in n above and setting k×m = n0

gives:

n =
λ−T · n0

|λ−T · n0|
. (3)

Layer normals thus deform according to λ−T .
We can calculate the spacing between two planes in

the deformed smectic elastomer. Consider the material
points x and x + d0n0 in two adjacent planes. These
transform into λ · x and λ · x + d0λ · n0 respectively. Re-
solving along the new layer normal the difference between
these two deformed points gives the new layer spacing:

d = d0(λ · n0) · n = d0(λ · n0) ·
λ−T · n0

|λ−T · n0|

d/d0 =
1

|λ−T · n0|
. (4)

Concrete examples are easy to evaluate since |λ−T · n0|
arose from the normalisation |(λ ·k)× (λ ·m)| in Eq. (1).
Taking k = x and m = y, and hence n0 = z, then

d

d0
=

1
|εijkλjxλky| ; ni =

λ−T
iz

|εijkλjxλky| , (5)

expressions we shall repeatedly use. The cross product
expression that produces the new layer normal can be
thought of geometrically as calculating the distance along
the normal between two planes, or as calculating the area
of the plane which relates to the physical constraint of
constant volume.

B. The rubber elastic free energy.

Smectic rubbers are capable of large, reversible shape
changes, presumably because their chains are still Gaus-
sian and highly mobile. Additionally the smectic has
the spontaneous uniaxial orientational order of a ne-
matic. Hence we expect, approximately, to have a ne-
matic elastomer for the underlying matrix, with the strin-
gent constraints of layers explored above. Describing
shape change by λ, an appropriate free energy density

is given by the trace formula [10]:

fn = 1
2µTr

[
λ · l0 · λT · l−1

]
(6)

where l0 is the shape tensor describing the distribution of
chain conformations before deformation; l describes that
afterward the imposed deformation:

l0 = (r − 1)n0nT
0 + δ (7)

l = (r − 1)nnT + δ. (8)

The order is characterised by an ordering direction n0

(which becomes n) and a shape anisotropy of the chain
shape distribution:

r = `‖/`⊥ = 〈R2
‖〉/〈R2

⊥〉 . (9)

This single parameter is the ratio of the effective step
lengths parallel (`‖) and perpendicular (`⊥) to the di-
rector, themselves related to the mean square chain di-
mensions in these directions. One can measure r by
neutron scattering directly, or deduce it from thermal
expansion measurements on going from the isotropic to
nematic/smectic states. Values of r have been observed
between 1.05 – 60 according to chain type in the prolate
case; oblate chains have r < 1. Smectic elastomer ther-
mal expansions [1] suggest prolate chains with r ∼ 2, an
illustrative value we shall adopt in this paper. The trace
formula describes a wide range of complex, non-linear
phenomena in nematic elastomers including large ther-
mal expansions, singular director rotations and plateaux
in stress-strain relations over wide ranges and geometries
of strain. We shall assume that applied strains do not
change the magnitude of the nematic order, at most af-
fecting its direction. This is a good assumption if we
are far from the nematic-isotropic transition. The free
energy (6) is re-derived in Section V in the process of
describing the smectic constraints.

III. THE RESPONSE OF A SMECTIC A
ELASTOMER TO IMPOSED STRAIN

We impose one component of λ (identified as a λ with-

out suffixes) as in Fig. 1 and calculate the relaxation of
the other components – that is shape changes and rota-
tion of the layers and hence also of the solid. One also
obtains the stress required to impose λ. The free en-
ergy density (with the reduced layer compression modu-
lus b = B/µ)

f = 1
2µ

[
Tr

[
λ · l0 · λT · l−1

]
+ b(d/d0 − 1)2

]
(10)

is minimised subject to volume conservation Det[λ] =
1 and where the relative layer spacing change and the
new director are given by Eqs. (3) and (4). The last
two conditions arise from the affine deformation of the
layer system with the strain, which we prove in section V.
The reduced layer modulus can be large but presumably
vanishes as one approaches the SmA-nematic transition
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where also the affine layer deformation assumption would
become invalid.

The specific forms given for the layer spacing and di-
rector are for the choice n0 = z initially, as depicted in
Fig. 1, which is useful for illustration; the coordinate-free
forms given are of complete generality.

A. Imposed strain λzz.

In this case, Fig. 1 (a), the deformation tensor:

λ =




λxx 0 0
0 λyy 0

λzx 0 λ


 (11)

allows for the shear λzx which is an alternative means of
increasing the z-dimension of the solid by layer rotation
rather than layer dilation. This is the CMHH mecha-
nism for elongation along the layer normal in smectics.
The shear λxz in the presence of a z-force of extension
would lead to torques and is not observed in smectics
elastomers [1] or in the analogous nematic elastomer ge-
ometries that involve simultaneous director rotation and
shear [12]. The volume constraint, layer spacing change
and director become respectively:

1 = λxxλyyλ (12)

d/d0 = 1/
(
λyy

√
λ2

xx + λ2
zx

)
(13)

n = (− λzx√
λ2

xx+λ2
zx

, 0, λxx√
λ2

xx+λ2
zx

). (14)

The free energy density is then:

f = 1
2µ

{
λ2

xx +
1

λ2
xxλ

2
+ λ2

zx +
(λ2

xx + rλ2
zx)λ

2

λ2
xx + λ2

zx

+(15)

+b
(
λλxx/

√
λ2

xx + λ2
zx − 1

)2
}

where volume conservation eliminates λyy.
Minimizing the free energy fixes the relaxing compo-

nents of the deformation tensor for a particular b value;
they are shown in Fig. 3. There is a critical, threshold
value of the elongation λ = λcr when the layer rotation
starts to occur. The threshold will be shown to be a
material property depending only upon b and r. The
rather large threshold chosen for illustration arises from
the small relative modulus, b, that has been adopted.
The threshold is to a uniform state (given by (11)), see
the sketch included in Fig. 4, and hence even exists inde-
pendently of clamp constraints and microstructure which
arise in practical cases, see section IV D. Thus Frank elas-
ticity has not yet been invoked for the threshold and will
turn out to be largely irrelevant.

Shear λzx starts with a singular edge at the thresh-
old and the transverse contraction λyy thereafter remains
constant. The accompanying stress also divides into two
distinct regimes with a much higher modulus before than

1.0 1.5 2.0 2.5
λ

zz

0.0

0.2

0.4

0.6

0.8

1.0

λ
zx

λ
yy

λ
xx

FIG. 3: Deformation tensor components for an imposed λzz

for b = 5 and r = 2. The shear λzx relaxes to an asymptote
of 1/

√
λcr for large λzz.
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λ
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FIG. 4: The nominal stress for a smectic elastomer stretched
parallel to the layer normal, with r = 2 and b = 5.

after the transition, see Fig. 4. The layer rotation, given
by n, Eq. (14), has the same singular edge and is plotted
against λ−1 in Fig. 5 which also compares the calculated
variation of orientation of the director with strain from
the experiment of Nishikawa and Finkelmann [1]. The ge-
ometric reason why (cheap) shear does not immediately
start, but only onsets after a threshold, is explained in
section III E 1.

Analytically, the solution to this model splits into two
parts: before and after the discontinuity. Before the lay-
ers start to rotate, λzx = 0. The free energy density is
given by:

f = 1
2µ

{
λ2

xx +
1

λ2
xxλ

2
+ λ2 + b(λ− 1)2

}
(16)

and has a minimum when λ2
xx = λ2

yy = 1/λ. Thus before
the layers start to rotate the two perpendicular directions
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FIG. 5: Comparison of the calculated orientation, φ, of the
director (dotted line) with the experimental points of [1] (cir-
cular points). The strain is defined as ε = λ− 1.

are equivalent and the material has Poisson ratios ( 1
2 , 1

2 )
in the (x, y) directions. The free energy density and the
nominal stress, σnom = ∂f/∂λ, are:

f = 1
2µ

{
2
λ

+ λ2 + b(λ− 1)2
}

(17)

σnom = µ

{(
λ− 1

λ2

)
+ b(λ− 1)

}
. (18)

Layer rotation starts at λcr. Numerically it is clear
that λyy = 1/

√
λcr is a constant. With this assumption

(to be confirmed below) after the transition, volume con-
servation then requires λxx =

√
λcr/λ. If deformations

were small, then one could say that the material now has
Poisson ratios (1, 0), to which we return when comparing
with experiment.

If we minimize the free energy w.r.t. λ2
zx then, after

some simplification, we obtain the condition:

0 = 1 +
(r − 1)λ4λcr

(λcr + λ2
zxλ

2)2
+ (19)

+b

[
λ3
√

λcr

(λcr + λ2
zxλ

2)3/2
− λcrλ

4

(λcr + λ2
zxλ

2)2

]
.

The shear λzx only appears in the following combination:

p2 = λ2
zx +

λcr

λ2
(20)

which is a function only of r − 1, b and λcr, that is
p(r, b, λcr), and obeys the equation:

0 = p4 + (r − 1)λcr + b
(
p
√

λcr − λcr

)
. (21)

p is not a function of λ and thus it can be fixed at any
convenient value of λ. For instance at the critical exten-
sion λcr, we have λzx = 0 and hence p = 1/

√
λcr. The

induced shear derives from putting this p into Eq. (20).
The contractions and shears after the instability are then:

λxx =
√

λcr/λ ; λyy = 1/
√

λcr (22)

λzx = ±
√

1
λcr

− λcr

λ2
. (23)

The shear displays the singular edge seen in Fig. 3. Both
signs of shear give the same dilation along z at constant
layer spacing. Both shears, and indeed all directions per-
pendicular to z (not just x), are required in a description
of any induced microstructure. See section IV C where
this issue arises experimentally.

The director (and thus layer) rotation can be derived
from the explicit expression (14) for n. For instance the
first component gives:

sin φ =
√

1− (λcr/λ)2 (24)

which has the singular edge and distinctive form shown
in Fig. 5 and in experiment.

Setting p = 1/
√

λcr in Eq. (21) gives a cubic equation
for λcr:

λ3
cr(r − b− 1) + bλ2

cr + 1 = 0 . (25)

To obtain a threshold at all we require b > r − 1. Below
this reduced layer modulus there is no instability – layer
dilation is not significantly more costly than matrix dis-
tortion and it is no longer avoided by the intercession of
an instability.

Instead of solving Eq. (25) analytically, it is more use-
ful to analyse it in the physically important large b limit.
The first few terms in an expansion yield the variation of
critical extension with layer modulus:

λcr = 1 +
r

b
+ r(r − 3)

1
b2

+ O

(
1
b3

)
. (26)

The choice of r and b in Figs. 3 and 4 is clearly out-
side the asymptotic realm of Eq. (26) but allows for an
exaggerated clarity in Fig. 3.

The threshold behaviour shown here occurs even for
very small values of B down to (r− 1)µ. This is because
the way in which the director deforms with the matrix
has been imposed. Physically this is correct for large B.
As B is reduced this constraint will become less rigidly
enforced and the crosslinks will be able to move through
one layer to the next. Thus the threshold behaviour pre-
dicted for very small B values (∼ µ) is unlikely to be
correct in practice. Except close to the SmA-N transi-
tion, experimentally one deals with large values of B.

All components of induced deformation and the rota-
tion of layers depend solely on (the imposed) λ and (the
observable) λcr, not in any separate or detailed way on
the smectic potential b or the anisotropy r. This very
tightly constrains theory since there are no free parame-
ters and requires all rotation-strain and relaxation-strain
relations, (22)-(24), to be universal for all systems.
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To calculate the stress, we substitute λzx back into the
free energy and obtain the closed form:

f = 1
2µ

{
2

λcr
+ λ2

cr + r(λ2 − λ2
cr) + b(λcr − 1)2

}
. (27)

From Eqs. (17) and (27) the nominal stresses are:

σnom =
{

µ
(
λ− 1/λ2

)
+ B(λ− 1) λ < λcr

µrλ λ > λcr .
(28)

Note that the continuity of the nominal stress with λ can
be used to derive Eq. (25). From this result it is clear
that the ratio of the two slopes is related to λcr, which
provides another stringent constraint on theory. Thus for
large b we can calculate the two slopes and obtain:

rµ

B
≈ λcr − 1. (29)

Experimentally one could obtain µ from stretching the
rubber in the layers, and thus obtain the anisotropy
of the polymers, r. The large B/µ expression (29) for
the threshold strain essentially agrees with the result
of Weilepp and Brand [6] if one neglects Frank effects.
These authors, and we in section IV D, show that Frank
elasticity has a small effect on the threshold strain but
does influence the length scales of the subsequent mi-
crostructure. Reference [6] ignores the anisotropy of the
underlying nematic network and thus the factor r is ab-
sent from their expression.

The layer spacing of the system as a function of the
imposed stretch is:

d

d0
=

1
λyy

√
λ2

xx + λ2
zx

=
λλxx√

λ2
xx + λ2

zx

. (30)

Before layer rotation starts λzx = 0 and so the layer spac-
ing increases as d/d0 = λ. After layer rotation starts we
have, from the same expression, d/d0 = λcr; layer spacing
remains fixed. The only cost in deforming the system is
that of shearing the rubber. This is because, as the lay-
ers rotate, the component of the force along the layers
remains constant. Further, because shear (as opposed
to extension and contraction along principal directions)
involves the chain anisotropy and it is the cost of this
shear that is to be compared with that of layer dilation,
we can understand that r (as well as the relative modulus
b) enters the expression for λcr.

We check that there are no other solutions by writing
the free energy as a function of the two variables λxx and
tan φ = −λzx/λxx and without making any assumptions
about λyy(≡ 1/λxxλ):

f = 1
2µ

{
λ2

xx + 1
λ2

xxλ2 + λ2
xx tan2 φ + (cos2 φ + r sin2 φ)λ2

+b(λ cos φ− 1)2
}

(31)

Minimizing w.r.t. λxx we obtain:

0 = 2λxx

(
1− 1

λ2λ4
xx

+ tan2 φ

)
(32)

with solutions λ2
xx = 0,± cos φ

λ . The only physical solution
is λ2

xx = cos φ
λ . Minimizing the free energy w.r.t. φ and

substituting for λxx yields:

0 =
sin φ

λ cos2 φ
+λ2(r−1) sin φ cosφ−bλ(λ sin φ cosφ−sin φ)

which can be factorized:

0 = λ sin φ

(
cos φ− λcr

λ

)
. (34)

.

(
λ2(r − 1− b) cos2 φ− λ

λ2
cr

cosφ− 1
λcr

)

provided that Eq. (25) is obeyed. Thus our solution (a
combination of the first and second factors) was a min-
imum. The third factor is real only if λ2

crb < −3/4 and
therefore never relevant; thus the minimum was unique.

B. Imposed λxx

We consider the deformation gradient matrix:

λ =




λ 0 λxz

0 λyy 0
0 0 λzz


 . (35)

Volume conservation is simply expressed by:

1 = λλyyλzz (36)

because the matrix is upper triangular. The layer spac-
ing and director are now given by: d/d0 = 1/(λyyλ) and
n = (0, 0, 1). Intuitively such imposed extensions should
not rotate the layers since a cheap, volume-conserving re-
sponse is simply to contract along y leaving the more ex-
pensive z dimension unchanged. This is one reason why
we have not included shear λzx since from the form of the
new director (layer normal), Eq. (14), it is precisely this
shear that induces layer rotation. Moreover this shear
also introduces torques from the change of shape in the
presence of an x component of force which tends to elimi-
nate the distortion. The conclusion of this section is also
that the other component of shear vanishes too, which
we confirm directly.

The deformation tensor substituted into the free en-
ergy, and the volume conservation constraint eliminating
λzz, results in:

F = 1
2µ

{
λ2

yy + rλ2
xz + λ2 +

1
λ2

yyλ
2

+ b

(
1

λyyλ
− 1

)2
}

(37)
The shear only appears once, hence minimisation yields
λxz = 0. Minimization of this free energy w.r.t. λyy

gives:

λ2λ4
yy − 1 = b(1− λλyy) . (38)
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From this equation it is clear that the limits of small
and large b correspond to λyy = 1/λ (with λzz = 1) and
λyy = λzz = 1/

√
λ respectively. The material with a

small b value is still a SmA in the sense that the director
is constrained to lie along the layer normal. To calculate
the Poisson ratios from this expression we make the small
strain expansions:

λyy = 1 + ε (39)
λ = 1 + ω. (40)

whence to first order in ω and ε, Eq. (38) becomes:

4ε + 2ω + b(ε + ω) = 0. (41)

The Poisson ratio in the y direction, νy = −ε/ω, and that
in the layer direction, νz are:

νy =
2 + b

4 + b
; νz =

2
4 + b

. (42)

The cross over from Poisson ratios (z, y) = (0, 1) to
(1/2, 1/2) is thus relatively slow. However, it is clear that
for b ∼ 60, as found [1] in some experimental samples,
the material is firmly in the (0, 1) class.

For large b where layer relaxation is suppressed (λzz →
1), the elastomer is like a classical 2-D rubber. Since
there is no director rotation, r does not enter. The free
energy density (37) reduces to

f = 1
2µ

{
λ2 + λ2

yy

}
= 1

2µ
{
λ2 + 1/λ2

}
(43)

as a consequence of higher layer stiffness and volume con-
servation. The Young’s modulus derived from Eq. (43) is
E⊥ = ∂2f/∂λ2|λ=1 = 4µ, rather than the value 3µ that
obtains for a 3-D rubber. Dimensional constraints have
increased the modulus. However this must remain an up-
per bound on E⊥ for reasons we discuss in Section IV B.

C. Imposed λxz

Consider the deformation gradient matrix:

λ =




λxx 0 λ
0 λyy 0
0 0 λzz


 . (44)

We suppress λzx since typically the application of λxz is
with plates that constrain the sample. Again, volume
conservation is simply expressed by:

1 = λxxλyyλzz . (45)

We eliminate λyy by using the volume conservation con-
straint. The resulting free energy is:

f = 1
2µ

{
λ2

xx +
1

λ2
xxλ

2
zz

+ λ2
zz + rλ2 + b (λzz − 1)2

}

(46)

The shears λ and λzz do not couple and so the imposed
shear cannot affect λzz. Minimizing over λxx and λzz

yields λzz = λxx = 1 and the free energy density becomes

f = 1
2µ

{
3 + rλ2

}
. (47)

The result is as for simple shear in a nematic elastomer
with unrotating director. The anisotropy enters in the
classical way – for large r the effective modulus rµ be-
comes large because chains extend across several shear
planes. This modulus is identical to that obtaining af-
ter the instability on stretching along the layer normal,
Eq. (28), because then deformation is largely via shears
in the rotated planes.

D. Imposed λzx

Consider imposing the deformation of in Fig. 1 (d):

λ =




λxx 0 0
0 λyy 0
λ 0 λzz


 . (48)

It is lower triangular. Allowing a λxz component causes
the elastomer to simply rotate 90◦ and experience an ef-
fectively pure λxz deformation. The director and volume
conservation are given by:

n =
1√

λ2 + λ2
xx

(−λ, 0, λxx) (49)

1 = λxxλyyλzz. (50)

On eliminating λyy by volume conservation, the free en-
ergy density is:

f = 1
2µ

{
λ2

xx +
1

λ2
xxλ

2
zz

+ λ2 + rλ2
zz +

λ2
zz(λ

2
xx + rλ2)

λ2
xx + λ2

+

+b

(
λxxλzz√
λ2

xx + λ2
− 1

)2


 . (51)

which can be numerically minimized using the simplex
algorithm. A typical solution is illustrated in Fig. 6.
Fig. 7 shows the corresponding layer spacing change for
imposed λzx. In this deformation we are thus effectively
compressing the layers. Even for very large b, the layer
spacing eventually yields and begins to decrease.

E. General decomposition of shear

Deformations can be decomposed into a minimal set
of three component deformations, an imposed λxx, λxz

and λzz, plus a rotation. The choice is natural since λzz

by itself can describe a layer compression or extension,
λxx along with constancy of volume can describe shape
changes of the smectic layers, and λxz describes out of
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FIG. 6: The relaxing components of the deformation tensor
on imposing λzx for a rubber with b = 5, r = 3.
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FIG. 7: Relative layer spacing change on imposing λzx for the
rubber of Fig 6.

plane shears at constant layer spacing. We return shortly
to the significance of the latter when we explain how the
threshold to instability under imposed λzz arises.

As an example we decompose the λzx deformation. It
is non-trivial since, as we have seen this shear induces a
layer compression. It is broken up into:

λ = W ·D (52)

where rotation and deformation of the solid matrix are:

W =




cos γ 0 sin γ
0 1 0

− sin γ 0 cos γ




D =




1 0 λxz

0 1 0
0 0 1


 ·




λxx 0 0
0 1

λzzλxx
0

0 0 1
λzz


 .

The layer stretch and in-plane deformation is followed by
a λxz shear, which is then followed by a rotation. Overall,

the deformation gradient tensor is thus:

λ =




λxx cos γ 0 λzz(λxz cos γ + sin γ)
0 1

λxxλzz
0

−λxx sin γ 0 λzz(cos γ − λxz sin γ)


 (53)

From this deformation we can calculate the director:

λ−T · n0 =
(

sin γ

λzz
, 0,

cos γ

λzz

)
→ (sin γ, 0, cos γ) (54)

where the final expression is the normalised director. The
rotation required to reduce this deformation to the form
of an imposed λzx deformation is tan γ = −λxz which is
what eliminates the upper right element of λ. Then:

λ =




α 0 0
0 1

αβ 0
λ 0 β


 (55)

where:

α =
√

λ2
xx − λ2 ; β =

λxxλzz√
λ2

xx − λ2
; λ =

λxxλxz√
1 + λ2

xz

Since the deformation (55) is now of the same form as our
simple starting point Eq. (48), the free energy is then of
the same form as Eq. (51) and we have the decomposition
of the mode. This decomposition is significant because
it shows that there are only three different deformations
that the sample can undergo once we have removed a
trivial rotation. This is dramatically different from the
case of nematic elastomers.

1. The geometrical basis of the CMHH instability

If shears are cheaper than layer dilations by a factor of
1/b = µ/B why is there a threshold at all for the CMHH
deformations in response to an imposed λzz? At first
sight Eq. (11) and Figure 4 would seem to suggest that
there is simply a λzx shear after the instability. In this
frame, this is indeed true but it is clearly accompanied
by other distortions required to keep the layer spacing
constant (see the insets to Figure 4). A λzx shear alone
causes the layer spacing to contract.

A decomposition can be performed on the imposed λzz

deformation. In this case we start from Eq. (53) and set
tan γ = −λxz. We can then identify λ = λzz

√
1 + λ2

xz.
This decomposition gives a geometric reason for the
threshold. Suppose that the elastomer deforms with only
the λzz component. The free energy density is then:

fzz = 1
2B(λ− 1)2. (57)

Alternatively the sample could deform by a shear λxz,
which leaves the layer spacing unchanged, and then ro-
tate to accomplish the same λzz value. In this case the
free energy density is:

fxz = 1
2µrλ2

xz = 1
2µr(λ2 − 1) . (58)
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Comparing these two energies for small ε where λ = 1+ε,
we find that fzz ∼ 1

2Bε2 < fxz ∼ µrε, provided that ε <
2µr/B. The latter energy is first order rather than second
order in the strain and explains why it is so costly and
unphysical (it is second order finally where it intercedes
after λcr. This decomposition also shows that an imposed
λzz is equivalent to an imposed λxz deformation plus a
rotation and a fixed stretch along the layer normal such
that d/d0 = λcr). The decomposition explains why the
modulus of the sample after the threshold is the same as
that for an imposed λxz deformation.

IV. COMPARISON WITH EXPERIMENT

Three different types of experiments have yielded in-
formation on the response of SmA elastomers – strain re-
sponse, stress-strain and rotation-strain measurements.
We calculate detailed results in all these areas and now
compare with the relevant experiments of Nishikawa and
Finkelmann [1] [NF], not only the functional forms of re-
sponses but also the interconnections between the phys-
ical variables entering our description, that is layer and
shear moduli B and µ, chain anisotropy r, and threshold
strain λcr. We focus here on the two strains imposed by
NF, λzz and λxx.

Our theory is not relevant to weakly coupled smec-
tic elastomers where there is no elastic signature of the
smectic layer system [13]. Such elastomers are appar-
ently well-described by isotropic rubber elasticity as is
appropriate for a nematic elastic matrix where the direc-
tor cannot rotate (biaxial strains in the layer planes were
examined).

A. Strain response

The Poisson ratio is a measure of transverse strain
response at small strains. For imposed λzz the ex-
perimental response is isotropic and volume preserving,
Poisson ratios (1/2, 1/2), until the layer instability is
reached. Thereafter the transverse relaxation is appar-
ently (1/λ

1
2 , 1/λ

1
2 ) from a close inspection of the snap-

shot of large strain given in Figure 4 of NF. The authors
do not give a functional dependence but the figure rules
out the predicted monodomain post-threshold response
Eq. (22) which, if strains were small would correspond
to Poisson ratios (1, 0). This discrepancy is not surpris-
ing given that there is clearly not a monodomain after
λcr. We return to this question in our analysis of layer
rotation and X-ray experiments.

Imposed in-plane stretches λxx give predicted Poisson
ratios (νy, νz) = ( 2+b

4+b ,
2

4+b ). Experimentally NF give
(1, 0) corresponding to b À 1. These Poisson ratios agree
with the stress results that show that smectic order is
much more rigid than rubber elastic effects.

B. Stress

Figure 8 shows that nominal stress-strain (λ− 1) data
of NF for imposed λ = λzz along the initial layer normal
direction. It is fitted to Eq. (28). From the data one
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zz

0

25

50

75

100

125

150

σ no
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a)

FIG. 8: Stress against imposed deformation λzz – solid line
theory, points are data of reference [1]. Cross over occurs at
a threshold strain of 4% as in Fig. 5.

can deduce that the ratio of the slopes is 4.1 × 10−2.
We predict in Eq. (28) this ratio should be µr/B = r/b
whereupon b = r/4.1 × 10−2 À 1 is evidently large. In
the limit of such smectic moduli, Eq. (29) predicts the
direct connection r/b = λcr − 1 for the threshold giving
here εcr = λcr − 1 ≈ 4% which is extremely close to that
observed in Fig. 8.

In-plane stress and moduli in response to imposed λxx

were not reported by NF. The in-plane Young’s modu-
lus, E⊥, is known from other work to comparable to the
post-threshold modulus, Eafter say. The in-plane Young’s
modulus was calculated in section III B.

Many SmA elastomers that have been investigated are
suspected to be de Vries phases, that is where there is in-
cipient SmC ordering. This tilt is not long ranged in its
order. The signature of this local order is that the tran-
sition to the SmC state with long ranged order is not
accompanied by a layer spacing change as expected from
the transition from a standard SmA. Applied strain λxx

in one in-plane direction could extend the correlation in
SmC ordering and direct it along the strain, allowing the
rubber to extend along x at lower energy cost than 4µ.
Tests of this type of response would be: (i) The observa-
tion of in-plane induced optical birefringence. While an
untilting director remains anchored along the layer nor-
mal, the response should be that of a classical elastomer
where stress induces very small birefringence compared
with that in any liquid crystal system. In comparison
a de Vries elastomer would have a huge birefringence
response. (ii) The ratio Eafter/E⊥ is predicted to be
rµ/4µ = r/4. Departures from this ratio could be due to
a low E⊥ because of de Vries. However to some extent de
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Vries should also intervene in Eafter since there is an ele-
ment of in-plane stretch in the now rotated planes. The
balance between the intervention of de Vries effects in the
two moduli is not trivial since the component of stretch
in-plane and the degree of shear acting both change with
strain beyond the threshold for the Eafter case.

C. Layer rotation and X-ray scattering

Layer rotation against strain starts in a singular man-
ner at a threshold λcr both in theory, Eq. (24), and in an
X-ray determination of layer orientation, Fig. 5. Agree-
ment with φ(λ) is good, but a major problem of inter-
pretation remains. As strain increases, the X-ray inten-
sity associated with the rotating layer lines diminishes
sharply. NF proposed that above λcr a diminishing frac-
tion of the sample rotates while an increasing fraction
melts to a nematic state. On energetic grounds this ap-
pears unlikely since the smectic energy scale is high com-
pared with the rubber elastic scale. The entropy change
found by NF for the smectic-isotropic phase transition
was ∆S = 2.4 × 10−2JK−1g−1. Thus the cost for melt-
ing at 300K for a sample with density ρ ∼ 1g cm−3 is
T∆Sρ ∼ 7.2×106 J m−3. To pay the cost of melting, an
energy density of 1

2B(λcr−1)2 ∼ 8×104J/m3 is available
and is clearly rather little.

A more direct explanation than melting is that lay-
ers rotate their normals towards all directions perpen-
dicular to the stretch along the original layer normal
n0. Section IIIA calculates the contraction and shear
in the x direction perpendicular to original layer normal
z (Eqs. (22) and (23)) and the rotation of the normal to-
ward x (Eq. (24)), but no direction perpendicular to the
original director is privileged (in contrast to stripe forma-
tion in nematic elastomers). We must consider all other
axes perpendicular to n0. This break up of the sample
into a microstructure of regions of tilted domains is cylin-
drically symmetric around the stretch axis. The regions
that are tilted toward the X-ray beam no longer meet
the Bragg condition for diffraction, and as a result do
not contribute intensity to the observed scattered beam.
We suggest that the drop in X-ray intensity is simply a
result of polydomain formation. Additionally, the over-
all Poisson ratios observed in the two, now equivalent
directions perpendicular to the original layer normal are
(1
2 , 1

2 ) rather than the monodomain values (1, 0).
A small angle setup is sketched in Fig. 9. Scattering in

NF is through an angle 2θ where 2θ ∼ 3◦. For the shown
incoming and final beams, ki and kf , the scattering vec-
tor k = kf − ki is along the layer normal. Under these
circumstances one can satisfy the Bragg condition:

k = q0 → 4π sin θ

λ0
=

2π

d0
(59)

where λ0 is the X-ray wavelength and d0 the layer spac-
ing. This fixes the angle 2θ. The sketched set up is not

q
0

k f k i

λ zz

x

y

z

2θ

k

φ

FIG. 9: The X-ray scattering set up. Layer normals are ini-
tially along the stretch direction z. The incoming beam is
scattered through an angle 2θ having been incident at an an-
gle θ. The final beam is detected on an image plate behind,
on which a circle of spots is dotted for the cases where layers
are rotated through angle φ. The scattering vector k is along
the layer normal and for Bragg scattering matches the layer
vector, initially q0.

quite that of NF since they direct the incident beam per-
pendicular to the sample, i.e. along the x-axis. This
means that k is misaligned from the layer vector q0 and
hence also from the Bragg condition by an angle θ. Line
visibility before stretching occurred suggests that the in-
trinsic width of the lines is of order θ or more. Since θ
is rather small, we continue analysing Fig. 9 rather than
that of NF.

Consider planes rotated clockwise by φ about x so that
their normals remain in the (y, z) plane and make an an-
gle φ with the stretch direction z. Clearly then the scat-
tering plane which includes k, ki, kf and q0 also rotates
by φ and the layer spot rotates on the image plate to the
position indicated by φ. Planes performing this rotation
retain a satisfiable Bragg condition and are those seen
in experiment. Polydomain layer normal arrangements
would have planes with normals forming angle φ with
the z axis but randomly distributed in their azimuthal
angle α about z, the circle in Fig. 10 which gives the
sphere of radius |q| = 2π/d0 where the layer vectors q
can sit. Only those planes with a q that matches a k
in the (y, z) plane to within their natural angular width
δc can contribute to the scattering. On Fig. 10 a plane
vector and its natural width are shown. Its angle α for
this φ is clearly sufficiently large enough to remove over-
lap with the scattering vector. The contributory fraction
of the plane normals rapidly diminishes as φ initially in-
creases. The angular separation, δ, of k and the q at α
is sin(δ/2) = sin φ sin(α/2). Only sets of planes with q
such that their α angles give a separation δ < δc/2 from k
will contribute to the scattering. The critical azimuthal
separation αc is given by

sin(αc/2) = sin(δc/2)/ sinφ , (60)
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FIG. 10: The spherical shell of layer vectors q. Those with
angle φ sit on a circle centred about the initial layer normal
no. A q vector is at angle δ with respect to a scattering vector
k in the (y, z) plane.

that is, plane normals in the interval −αc < α < αc

will have lines overlapping with k and thus contribute to
the X-ray intensity. As φ → 0, the circle of q at φ is so
small that all planes irrespective of their position α on the
circle contribute to the scattering. This is clearly when
φ = δc/2 and indeed the condition (60) gives sin αc/2 = 1
or αc = π and all domains contribute. The intensity for
φ > δc/2 is then

I(φ) = I0
2αc

2π
= I0

2
π

sin−1

[
sin(δc/2)

sin φ

]
(61)

where the first factor stresses that a fraction 2αc/2π of
all possible sets of planes contributes. The sharp switch
from the I(φ) above to the saturated value I0 for φ < δc/2
is an consequence of our artificial assumption that planes
either overlap with the detector or not, rather than grad-
ually losing their overlap. The intensity variation I(φ)/I0

is shown in Fig. 11. There is qualitative agreement with
the NF experimental points that are shown.

Several problems with comparing with data arise. No
I(φ) plot was directly available to us – the data was ab-
stracted from φ(ε) and I(ε) plots given by NF. The first
data point for φ 6= 0 carries the highest burden of error
since it is taken from a φ(ε) plot of seemingly infinite gra-
dient around εc. Secondly the lines at small φ especially
were conspicuously asymmetric between ±φ. Is the at-
tribution of intensity to I(φ) ambiguous as a result? In
any event it is evident from the data that a very rapid
drop in intensity from φ = 0 takes place. The residual
small angle (in θ) intensity about φ = 0, that is repre-
senting unrotated layer systems, is relatively much more
constant with strain. It is initially a very small fraction of
the rotated layer line intensity but increases in relative
importance because the layer lines diminish so quickly.
It may represent regions near the boundaries of the elas-
tomer or near clamps. These planes rotate much later

0 10 20 30 40 50
φ

0.00

0.25

0.50

0.75

1.00

I(
φ)

/I
0

FIG. 11: The experimental data (◦) of [1]. The solid curve
corresponds to 0.3

sin φ
which ignores the intrinsic width of layer

lines; the dashed curve is 2
π

sin−1
�

0.1045
sin φ

�
which accounts for

line width.

than the bulk (which is consistent with the contribution
finally diminishing with strain). Such hetrogeneity in
rotation is well known in the quasi-convexification of ne-
matic elastomer response by the creation of polydomains
[14]. The effect of having a distribution of q vectors with
random α on the large angle scattering (and hence on the
perceived nematic order parameter) is more complicated
and we return to that elsewhere.

D. Microstructure after the CMHH transition

When elongation along the layer normal, λzz becomes
too costly we have seen that layers rotate instead of dilat-
ing further (the cartoon of Fig. 4). However the sample
must be clamped in order to apply a z extensional force
and thus the rotation cannot occur uniformly throughout
the sample. It must vanish at z = 0 and z = Lz, that is
at the clamps, and must vary in the x-direction between
the values ±φ, Eq. (24), sufficiently rapidly that large
layer translations are not built up which would then cost
large elastic energies to satisfy the clamp constraints, see
Fig. 12. On the other hand very fast x-variation between

h h
x

z

FIG. 12: The microstructure of a sample loaded past the
threshold stress. Stripes (dotted) of width h are shown coars-
ened, the layer normals being at ±φ with respect to the ex-
tension axis, z.

±φ leads to a high Frank elastic energy cost. The re-
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sulting x-length scale and overall energy cost arises from
optimising the sum of these two energies. Microstructure
development in layered systems with disparate moduli is
a classic problem in liquids [2]. It also occurs in thermo-
plastic elastomers and in a wide variety of other layered
materials [15]. Here we give a short analysis to produce
a first estimate.

Length scales emerge naturally from layer and matrix
elastic moduli B and µ competing with Frank elastic
energies which, for simplicity, we represent by a single
constant κ. One obtains geometric quotients from Euler-
Lagrange analysis: ξ =

√
κ/µ ∼ 10−8m for the nematic

penetration depth. It is a measure of how deeply a direc-
tor variation can penetrate into the depth of a material
while acting against the penalty for director rotation. It
determines stripe interfacial lengths and the seemingly
instant coarsening in the analogous strain-induced mi-
crostructure observed in nematic elastomers [12]. Anal-
ogously, one defines the usual smectic penetration depth
ξsm =

√
κ/B ' d0 ∼ 10−9m which determines the pene-

tration of distortion into a smectic structure. It is inde-
pendent of the rubbery elasticity and is an even smaller
length suggesting that smectic microstructure should also
be instantly coarsened. The geometric mean of the smec-
tic and Frank scales gives an interfacial energy density
for the energy cost per unit area of stripe formation –
γsm =

√
κB.

One finds, in close analogy to the nematic stripes prob-
lem [12], that the threshold λzz = λcr found in the case
of instability to a uniform system is shifted very slightly
by Frank effects to a higher λ′cr & λcr at which point
there is a small jump to a finite φ > 0. The creation of
microstructure to accommodate clamp constraints means
there are spatial variations and thus a (small) Frank con-
tribution to the energy. A little more strain must be
imposed to overcome this additional cost.

The stripe period in the x-direction is

h ∼
√

LzξsmB/(rµ)
1

(λ− λcr)1/4
(62)

The period never diverges since λ > λ′cr & λcr and rapidly
saturates to

h ∼
√

LzξsmB/(rµ) ∼
√

10−3 × 10−9 × 20m ∼ 4µm

for a sample of length Lz ∼ 10−3m. This is in the scale of
lengths which would give the strong light scattering that
is actually observed. Microscopic results for h are not
yet available as they are in the nematic case. It would
be interesting to investigate stresses and rotations the
threshold region in detail, and to examine stripes in a
microscope.

V. MATRIX-LAYER COUPLING FROM
CROSSLINK LOCALISATION

We derive the underlying rubber elasticity and the
rigid layer-matrix constraints for a smectic elastomer

where network crosslinks are strongly coupled to smectic
order. However, there is still disagreement in this still-
controversial area as to how this coupling comes about.
One argument for there being no constraint on layer mo-
tion relative to the rubber matrix has been advanced by
Radzihovsky [16]. It rests on the statistical spatial ho-
mogeneity of crosslink positions in a network crosslinked
in the non-smectic state (most probably the case of NF).
On then entering the smectic state chain spans stretch
or compress during the sinking of their crosslinked ends
into the smectic potential minima. Such homogeneity
means that the energy in the smectic state is indepen-
dent of where the layers form relative to the rubber ma-
trix. Given all positions of the layer system have identical
energy, there should be no modulus governing the posi-
tion of layers relative to the matrix. A similar argument
[9, 10] can be constructed in the orientational case for
soft elasticity in nematic elastomers. An isotropic (here,
layer-free) gedanken state is required (to establish the
energetic equivalent of differing states).

We believe that despite the independence of energy on
layer position, there is indeed resistance to layer displace-
ment relative to the matrix if crosslinks sink into suffi-
ciently deep minima in the smectic potential. An equi-
librium layer system displaced from a given system, after
being heated to and then cooled from the non-smectic
gedanken state, will have the same energy, but given
strands may end in different minima in the two systems.
But on displacing the original layer system at fixed tem-
perature, chains may not reach their minima appropriate
to the translated layer system because of smectic local-
isation, and then the energy must indeed rise. We now
calculate this energetic cost in the limit of strong order.
The harmonic coupling constant Λ, introduced in [3] for
layer-matrix relative translations, will emerge explicitly
as will the rigid constraints on matrix shear relative to
layer rotation, Eqs. (3) and (4). As the SmA to nematic
transition is approached from below, one would expect
the rigid coupling to be lost and a crossover from 2-D to
3-D rubber elasticity to occur.

Microscopic models of ordinary and nematic elas-
tomers require the probability distribution of end-to-end
spans of the network polymers. The trace formula (6)
derives from the averaged logarithm of the distribution,
that is of the partition function conditional on fixed end-
to-end distance. For a smectic elastomer both the size of
the span of a polymer chain and additionally the position
of its ends relative to the smectic layers are significant.
A corrugated potential, in which the crosslink points sit
is illustrated in Fig. 13. Deviation of crosslink points
from these wells is penalized because the ensuing disrup-
tion of the smectic order of the layers, and because of
the steric repulsion between crosslinks and the mesogens
[17]. Here we ignore the additional penalty incurred by
segments of the polymer chain by virtue of their crossing
the smectic layers. This could be corrected for to some
extent by putting in an effective value of the anisotropy,
r. There is evidence [18] that homopolymer networks,
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FIG. 13: A microscopic model of a smectic elastomer.
Crosslink points sit in a periodic potential resulting from the
smectic ordering. For clarity, the smectogens are not shown.

where the smectogens are not diluted, experience a strong
potential (as evidenced by their extreme Poisson ratios
(0, 1)). On the other hand, dilution takes one to the
other limit, namely a smectic elastomer where the layer
modulus is too low to influence the solid elasticity [18].
The interaction of crosslinks with a smectic potential has
been studied by Olmsted and Terentjev [17]. These au-
thors were interested in the limit of weak potentials since
they described the character of the Nematic to Smectic
A transition in the presence of randomness induced in
this manner. We explore instead the effect of strong po-
tentials.

Taking account of the Gaussian distribution of inter-
link chain configurations and the additional weight given
to the end positions by the smectic potential, the prob-
ability distribution of the ends of the chain, R1 and R2

is:

P0(R1,R2) ∝ exp
{
− 3

2L
RT

12 · l−1
0 ·R12 + 2β cos(α− qT

0 ·R1) + 2β cos(α− qT
0 ·R2)

}
(64)

≈
∑
n,m

exp
{
− 3

2L
RT

12 · l−1
0 ·R12 − β(2πn− qT

0 ·R1 + α)2 − β(2πm− qT
0 ·R2 + α)2

}
(65)

=
∑
m,n

P0(m,n)(R1,R2), (66)

where R12 = R1 − R2, L is the arc length of a poly-
mer, q0 is the wave vector of the smectic layers, α is
an additional phase if layers are displaced with respect
to the matrix, and β = Vs/kBT defines the strength of
the smectic layer potential in which the crosslinks sit, di-
vided by kBT . Unlike [3, 7, 17] we are only interested
in the uniform (non-fluctuating) displacement fields for
the matrix and layers. The step length definition is as
in Eq. (7) but without a factor of `⊥ yet taken out as in
that dimensionless form:

l0 = `⊥δ + (`‖ − `⊥)n0nT
0 . (67)

We also assume, without loss of generality, that the first
layer in the system sits at the origin α = 0, i.e. there is no
displacement w.r.t. the background. In Eq. (65) we have
taken the limit of β À 1 and written the probability dis-
tribution as a sum over all the layers labelled by n and m
in which the two different ends can sit. We have written
the cosine functions as a power series and, since β À 1,
only the first term is significant. We can then bring down
the summation sign from the exponent because β is so
large all the wells of the potential are effectively decou-
pled. This expression is useful when quenching ends into
a layer at crosslinking. The component (z) along the
layer normal of this probability distribution is of the form

f(z) ∝ e−z2−cos(z). In the limit of strong potential, the
peaks are separated and one can replace this function by
a sum over Gaussian peak shapes displaced from the ori-
gin by multiples of the layer spacing and modulated by
the nematic Gaussian exp

{
− 3

2Lz`−1
‖ z

}
.

It is useful to convert to centre of mass and relative
coordinates in both spans and layers:

P = 1
2 (R1 + R2) Q = (R1 −R2) (68)

p = (n + m) r = (n−m) (69)

The Jacobian from this change of variables for the fol-
lowing integrals cancel with the same factor in the nor-
malization of the probabilities. The exponent in Eq. (65)
then contains the following:

− 3
2L

Q·l−1
0 ·Q− 1

2β(2πr−qT
0 ·Q)2−2β(πp−qT

0 ·P)2 (70)

When the smectic elastomer is formed deep in the smectic
phase, the specific layer that the crosslink points are in
will be a quenched variable, that is both p and r are
quenched variables. When the crosslinks are formed the
span of the polymer, Q, is quenched in, and since both
the ends of the chain are fixed into a network then so
must the coordinate P also be quenched.
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We now deform the matrix by λ so that P → λ · P,
then translate it by u, and finally translate the smectic
layers parallel to their new normal by v. Only the centre
of mass part with P (and not the relative part with Q)
in the energy is changed. The last term in Eq. (70) on
transforming the solid plus layers becomes:

2β(2πv/d + πp− qT · (λ ·P + u))2 .

Note that the phase picked up by layer translation in-
volves the new spacing d rather than that before defor-
mation d0 in the first term and likewise in the last term
it is the new wavevector qT that enters. To calculate the
free energy of the system we must complete the following
quenched average of this energy over the probability of
the formation conditions:

F = −kBT

∫
dP

∫
dQ

∑
p

∑
r

P0(p,r)(P,Q) ln
[
P(p,r)

(
(λ ·P + u), λ ·Q

)]
(72)

=
kBT

N
∫ ∫

dPdQ
∑

p

∑
r

exp
{
− 3

2L
Q · l−1

0 ·Q− 1
2β(2πr − qT

0 ·Q)2 − 2β(πp− qT
0 ·P)2

}

·
[

3
2L

QT · λT · l−1 · λ ·Q +
β

2
(2πr − qT · λ ·Q)2 + 2β(2πv/d + πp− qT · (λ ·P + u))2

]
(73)

Here N is the normalization constant for the probability
distribution. This integral can be separated out into an
integral over P and an integral over Q. The first gives
the vital foundations of smectic rubber elasticity - the
coupling between layer and matrix displacements and the
rotation of layers with the deformation of the matrix.
The second will give the actual form of the smectic rubber
elastic energy. We tackle these two integrals one at a
time.

The P integral is:

1
N

∫
dP

∑
p

exp
{
−2β

(
qT

0 ·P− πp
)2

}
·

·
[
2β(2πv/d + πp− qT · (λ ·P + u))2

]
.

To perform the sum over p we first note that β >> 1 so
that we have a very narrow Gaussian distribution and the
particular value p = 1

πqT
0 ·P is picked out. The resulting

expression is:

1
N

∫
dP

(
2β

[
2πv/d− qT · (λ ·P + u) + qT

0 ·P
]2

)

= 2β

[(
2πv/d− qT · u)2

+
L2

i

12
(qT · λ− qT

0 )2i

]
,(74)

on doing the P integral as well. This expression, though
an energy density, contains in the strain term the size of
the system in the ith direction, Li, since the integral is
not governed. The term is so large because if the layers
were to rotate relative to the network in such a way as to
not be commensurate with the crosslink points, then all
of the crosslinks throughout the whole sample would be
displaced from the minimum in the smectic potential by
an amount scaling with the lineal dimension of the sys-
tem, resulting in a massive energy cost. This otherwise

large term can be made zero (minimised) only if qT · λ
and qT

0 are parallel. Their magnitudes can be made to
agree by modifying d which is penalized separately by
the modulus B. Thus the rotation of the layers with the
applied deformation is a rigid constraint :

q = λ−T · q0 (75)

This result is the microscopic justification of the geomet-
ric results (3) and (4). The total rigidity of the constraint
on layers and shears was first obtained in [3].

The first term of Eq. (74) describes the penalty asso-
ciated with a mismatch between the smectic layers and
the matrix arising from translation of one relative to the
other. Multiplying by the number of network strands per
unit volume, ns, gives the associated free energy density:

frel = 2kBTβ(
2π

d
)2ns(v − n · u)2 ≡ 1

2Λ(v − n · u)2

with Λ = 16π2µVs/(kBTd2) . (76)

This layer-matrix coupling has been used in continuum
models [3, 6] and in [7] where it was estimated phe-
nomenologically, see also [10]. Connection can also be
made roughly to the polymer scale via R2

0 ∼ Nd2 where
R2

0 ∼ `L has previously been introduced as a characteris-
tic mean square dimension, here for a chain with N links.
Also the smectic scale enters as Vs ∼ kBT |ψ|2. Then our
estimate of Λ is:

Λ = 16π2µN |ψ|2/R2
0 .

The cost of uniform relative translation decouples from
the cost of shears and shear-layer rotation/dilation, and
we do not employ it in our non-linear elastic analysis.
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To obtain the rubber elastic part of the free energy, we
now consider the integral over the variable Q (suppress-
ing the normalisation 1

N ):

∫
dQ

∑
r

exp
{
− 3

2L
Q · l−1

0 ·Q− 1
2β(2πr − qT

0 ·Q)2
}

·
[

3
2L

QT · λT · l−1 · λ ·Q +
β

2
(2πr − qT · λ ·Q)2

]
(78)

We use the same procedure as that carried out for the
previous integral; first the sum over r is evaluated picking
out the particular value r = 1

2πqT
0 · Q, and then the

integral over Q performed. After carrying out the sum
over r we obtain:

1
N

∫
dQ exp

{
− 3

2L
Q · l−1

0 ·Q
}
·

[
3

2L
QT · λT · l−1 · λ ·Q +

β

2
(qT

0 ·Q− qT · λ ·Q)2
]

The integral over Q can then be performed. The
first term results in the usual trace formula expression.
The second term can be evaluated using the average:
〈QT Q〉 = 1

3Ll0. The result is then:

Lβ

6
Tr

[
l0 ·

(
q0 · qT

0 − λT · q · qT · λ−

−λT · q · qT
0 − q0 · qT · λ

)]
(79)

This expression can be simplified by using the following
definition of l0 given in its dimensionful form Eq. (67).
Since n0 and q0 are parallel we have:

Lβ

6
Tr

[(
2π

d0

)2

`‖δ − l0 · λT · q · qT · λ

−λT · q · nT
0

2π

d0
`‖ −

2π

d0
`‖n0 · qT · λ

]
(80)

This expression can be rearranged into:

Lβ

6

(
(l1/2

0 · λT · q)− 2π

d0
n0

√
`‖

)2

(81)

It can be seen from this expression that this constraint
also penalizes q if it is not equal to λ−T ·q0. The resulting

terms from the Q integral are thus:

1
2Tr

[
λ · l0 · λT · l−1

]
+ 1

2
Lβ
3

(
(l1/2

0 · λT · q)− 2π
d0

n0

√
`‖

)2

One converts these energies per strand into energy den-
sities by multiplying by the strand number density ns.
Our final microscopic model for smectic liquid crystal
elastomers is:

f = 1
2µTr

[
λ · l0 · λT · l−1

]
+ 1

2B
(

d
d0
− 1

)2

, (83)
where µ = kBTns. The second term is the layer compres-
sion penalty from the smectic free energy. We also make
the identification of the layer normal, q with the direc-
tor, n, and rigidly impose the constraint: q = λ−T · q0.

This returns us to our starting point, Eq. (10), but from
a statistical mechanics point of view of the system.

VI. CONCLUSIONS

In conclusion, we have derived a model of smectic-A
elastomers from both a geometric view point and from
a microscopic model of the effect of a corrugated po-
tential on the crosslink points in the smectic elastomer.
This model reproduces the experimentally observed elas-
tic behaviour when the elastomer is stretched parallel
or perpendicular to the layer normal. Most notable is
the correlation between threshold strains and ratios of
the various moduli that are found, along with the de-
scription of a characteristic, singular layer rotation with
applied strain. The response to the two basic shears is
also predicted but has not yet been observed. Our model
also provides an explanation of the observed X-ray scat-
tering patterns when the appropriate microstructure is
considered.
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C. Tolksdorf, and R. Zentel, Phys. Rev. E 65, 041707

(2002).
[14] S. Conti, A. de Simone, and G. Doltzmann, J. Mech.

Phys. Solids 50, 1431 (2002).
[15] D. J. Read, R. A. Duckett, J. Sweeney, and T. C. B.

McLeish, J. Phys. D 32, 2087 (1999).
[16] L. Radzihovsky and J. Toner, private communication.
[17] P. D. Olmsted and E. M. Terentjev, Phys. Rev. E 53,

2444 (1996).
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