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We investigate the soft elastic modes of smectic elastomers, that is shape change without energy
cost. We use a microscopic model for their non-linear elasticity, similar those used for nematic
elastomers. We consider two different phases of smectic elastomer; the biaxial smectic A for a simple
illustration, and smectic C phases which are of great practical significance. We show that only one
non-trivial trajectory of the director gives soft deformations. We give a geometrical interpretation
of this soft elastic mode and give an explicit example.

PACS numbers:

I. INTRODUCTION

Soft modes in nematic elastomers are understood well
theoretically from both symmetry arguments [1] and
from microscopic models [2]. Regardless of the model
chosen, the underlying symmetries of a nematic elas-
tomer that must be present in any model result in the
occurrence of soft modes [3]. These soft modes have also
been investigated experimentally in both monodomain
and polydomain nematic elastomers [4]. Quantitative,
but not qualitative, deviations from characteristically
soft deformations occur if the elastomer is only semi-soft,
that is if it deviates from ideal symmetry requirements
[5].

The elastic properties of monodomain smectic A
(SmA) elastomers, synthesized by loading a swollen sam-
ple in the isotropic state and deswelling it into the smectic
state, do not show any sign of soft elasticity. The smectic
C (SmC) phase has also been synthesized experimentally
and been formed into monodomains [6]. This phase is sig-
nificant technologically because of its ferroelectric prop-
erties [7, 8]. Typically during soft deformation, shape
changes accompany director rotation. Once the director
is anchored perpendicular to the layers and loses its free-
dom to move relative to the solid matrix, softness is lost.
In the SmC phase the director has sufficient additional
freedom to be soft because the constraint on the layer
thickness does not totally determine the orientation of
the polymer shape tensor. Biaxial SmA is a conceptu-
ally simpler phase and also has sufficient freedom, but is
of more limited experimental interest. Models of these
two phases have been studied by different methods of
non-linear elasticity from ours, but for small strains, and
shown to be soft [9]. We aim here to give a geometri-
cal interpretation of these soft modes by calculating the
required deformation tensor for monodomains of these
two phases of smectic elastomers. A simple illustration
is first given for biaxial SmA, but our main aim is SmC
elastomers. In section II, we summarise the model that
will be used and introduce soft elasticity. We then calcu-
late the soft modes of biaxial SmA elastomers in section
III and finally we calculate the soft modes of an SmC
elastomer in section IV. Our main conclusion is that as
a result of the layer spacing constraint, the soft modes

of a smectic elastomer are defined by only one parameter
(excluding an arbitrary rotation).

II. SMECTIC ELASTOMER MODEL

The models of biaxial SmA and SmC elastomers we
will use here are extensions of the SmA elastomer model
derived in [10] which we now summarise.

The end-to-end span of the polymer chains that make
up the elastomer are modelled by an anisotropic Gaus-
sian distribution, as in nematic elastomers, which obtains
when chains are sufficiently long and which ensures that
the matrix formed on crosslinking is rubbery and highly
extensible. Additionally, in smectics the effect of the lay-
ers is to create a periodic potential in which biases where
the ends of the polymer chains, and thus the crosslinks,
sit. As a result of this potential the crosslink point dis-
tribution in the elastomer is only homogeneous within
the plane of the layers. Parallel to the layer normal the
distribution is periodic, as crosslink points sink into po-
tential wells. This picture of smectic elastomers results
in a strong coupling of the matrix to the layers. Conse-
quently, SmA elastomers have a modulus comparable to
that penalising the change of smectic layer spacing for
any shape changes of the rubber matrix which convect
layers to new spacings. This is a dramatic effect – smectic
elastomers are rubbery in two dimensions and solid-like
in the third; at larger strains they then suffer rotational
instabilities. This reduces the cost of distortions involv-
ing layer spacing change to those involving the lower cost
of rubbery distortion. In SmAs there is close agreement
between experiment [11] and theory [10].

We shall need the tensor `0 of effective step lengths of
the polymer at the instant of crosslinking. It is defined by
the second moment that specifies entirely the Gaussian
distribution of chains at that time:

〈R0
αR0

β〉P0 = 1
3L`0αβ . (1)

In the uniaxial case in the principal frame there are two
step lengths, `‖ parallel to the (unit) director n specifying
the direction of order, and `⊥ perpendicular to n. Note
that on undergoing a phase change from the nematic to
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a smectic state, the degree of anisotropy of the polymer,
r = `‖/`⊥, may be changed because of the additional
penalty of the polymer chains for crossing the smectic
layers. In the SmA phase this effect can be described by
decreasing the value of r for prolate chains on transition
to the smectic phase, this effect in SmC elastomers is
more complicated, as will be discussed in section IV.

We follow similar microscopic models of nematic elas-
tomers in assuming that the smectic elastomer is com-
posed of crosslinked polymers with identical strand
length L, and that the crosslink points deform affinely,
that is according to

R = λ ·R0. (2)

This is approximately true for individual chains. It
is correct on average and is exact in the limit of infinite
crosslink point functionality. For finite functionalities the
effect is small, a change in the prefactor of the free energy.
The quenched average of the elastic free energy density
over the end positions, R1,2, and over the layers that the
crosslink points occupy (assuming a strong potential lo-
calising crosslinks to layers) can be performed as in [10].
The resulting free energy density has a term proportional
to V2/3 (where V is the volume of the system) penalising
translations of the layers relative to the rubber matrix.
This divergent intensive term enforces the affine defor-
mation of the smectic layers with the matrix (crosslink
points):

q = λ−T · q0 (3)

where q0 is the initial wavevector, and q the current
wavevector of the smectic layers, and λ−T denotes the
inverse transpose of the deformation matrix. The affine
deformation of layers Eq. (3) makes the layer spacing

d

d0
=

1
|λ−T · k0| , (4)

where k0 is the initial (unit) direction of the layer normal
in the solid.

If the rubber-elastic free energy terms and the smec-
tic layer modulus terms are collected together then the
resulting free energy expression is

f = 1
2µTr

[
λ · `0 · λT · `−1

]
+ 1

2B

(
d

d0
− 1

)2

. (5)

where B is the smectic modulus associated with stretch-
ing the layers, d is the current layer spacing and d0 is the
initial layer spacing.

Both terms in the free energy density are non-negative.
If we are to find deformations of zero cost, then the sec-
ond term must vanish, that is d = d0 during deforma-
tions. This condition is easily expressed from Eq. (4)
or from Eq. (3) with |q| = q0, that is one must take λ

obeying the constraint:

kT
0 · λ−1 · λ−T · k0 = 1 . (6)

The first, rubber-elastic term of Eq. (5)is identical to that
of purely nematic elastomers and arises from distorting
the chain distribution away from its optimal shape. The
minimum energy density is 3µ/2 which arises when the λ

is such that the argument of the trace reduces to the unit
tensor δ. Trivially this can be satisfied by no deformation
and no director rotation, or by a director rotation and a
body rotation that are the same. The general form of
non-trivial, soft modes in nematic elastomers [3] is:

λ = `1/2
n ·W · `−1/2

0 , (7)

where W is a general rotation matrix, `0 is the initial
anisotropy tensor and `n is the current anisotropy tensor
of the polymer chain distribution, dependent on director
n. One can readily check that the λ of Eq. (6) renders

the argument of the Trace in Eq. (5) equal to δ and hence
gives the minimal free energy.

The tensor ` = (`‖ − `⊥)nn + δ → `⊥[(r − 1)nn + δ]
can have a factor of `⊥ extracted which we henceforth
ignore since ` always appears in expressions with an `−1,

and thus with an associated, cancelling 1/`⊥ factor, if the
latter tensor is also taken in its reduced form. In such
forms `1/2 = (

√
r−1)nn+δ and `−1/2 = (1/

√
r−1)nn+δ.

Expressions we later require, such as `1/2 ·n → √
rn, are

then easy to evaluate.
Physically, soft modes arise when the distribution of

chain shapes is rotated at constant shape (and thus con-
stant entropy and constant nematic energy) while the
body changes shape to accommodate the chains [12]. A
cartoon, Fig. 1, shows the initial chain shape distribu-
tion, an intermediate shape where the director rotation
is not yet complete, and the shape when the director
has rotated by 90o to be along the direction of imposed
stretch and shape change at constant energy has come to
its end.

FIG. 1: Chain shape distribution is rotated by 90o from n0

to a perpendicular n with an intermediate state direction θ
shown. The rubber deforms to accommodate the changing
chain shape distribution without distorting it.

The general form Eq. (7) can be rewritten in terms of a
particular vector n′ such that n = W ·n′ by multiplying it

by W ·WT from the left. The factor WT ·`1/2
n ·W becomes

`
1/2
n′ since the effect of the W tensors is a rotation of the
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tensor `
1/2
n . Thus the soft mode (7) becomes:

λ = W · `1/2
n′ · `−1/2

0 . (8)

In rewriting the deformation in this way it is clear that
the shape of the body after a soft deformation is de-
termined by the choice of n′ and is given by the term
`
1/2
n′ · `−1/2

0 (which may contain an element of body rota-

tion which we shall extract). It is followed by W which
is a pure body rotation and is of no elastic significance.
We can choose the vector n′ anywhere on the surface of a
unit sphere. Consequently a nematic elastomer has sev-
eral ways in which it can respond softly to an imposed
deformation. In the case of a smectic elastomer however,
there is considerably less freedom because of the layer
spacing constraint.

III. BIAXIAL SMECTIC-A ELASTOMERS

Biaxial nematic phases, that is liquid crystalline phases
where there is ordering along the director and perpen-
dicular to it, are rare. Examples of both lyotropic and
thermotropic biaxial nematic liquid crystals are known
[13, 14]. Biaxial nematic phases have also been found
in nematic polymers [15, 16] and in principle it should
be possible to make a biaxial nematic liquid crystal elas-
tomer. To our knowledge these have not yet been made,
but as in [9] we calculate their soft elastic deformations
as an illustration since they are so much simpler than
SmC elastomers.

To model biaxial SmA elastomers we follow section
II but include a biaxial polymer shape tensor, `, with
principal axes n, m and l, and corresponding eigen values
`‖, `1 and `2. The shape tensor of a biaxial polymer is
thus

` =




`1 0 0
0 `2 0
0 0 `‖


 (9)

In a biaxial SmA elastomer the layer normal k and the di-
rector n (the primary alignment direction) are identified.
In the soft mode of Fig. 1, director rotation was about
an axis perpendicular to n0. In SmA elastomers n ≡ k
is fixed along the layer normal and such a soft mode is
now lost, as we prove below. However in a biaxial SmA,
rotation about n is non-trivial. The secondary alignment
axes are free to rotate in the plane of the layers. Since
this section of ` is non-circular, `1 6= `2, soft deformations
in the perpendicular plane arise in complete analogy to
Fig. 1 for nematics but in the plane perpendicular to n0,
as we also prove below.

The layer spacing constraint Eq. (6) on identifying k
and n becomes:

nT
0 · λ−1 · λ−T · n0 = 1. (10)

The general soft mode (7) in constraint (10) yields:

1
r

= nT
0 ·WT · `−1 ·W · n0. (11)

Deriving Eq. (11) from Eq. (10) requires expressions dis-
cussed after Eq. (7). The only solution to this equation
is n = n′ ≡ W · n0 because the quadric surface asso-

ciated with `−1 only has the correct width at one point

(the maximum or minimum width depending on whether
r < 1 or r > 1). Returning this W to Eq. (7) gives, on

using the forms for `1/2 and `
−1/2
0 , the result λ = W ,

that is a trivial body rotation by the same amount as
the director has been rotated. There has been no shape
change of the body. Thus there is indeed no freedom for
the primary alignment director to rotate with respect to
the matrix, and hence no soft modes in uniaxial SmA
elastomers except for pure rotations. This is because if
the layer normal n is moved by any deformation other
than a rotation then the layer spacing will be changed
and the resulting state will be higher in energy. How-
ever, in biaxial SmA elastomers the secondary alignment
axes are unconstrained, thus there is still enough freedom
for a soft mode to exist, that is a manifold of solutions
of Eq. (11) not involving rotation of n.

The soft modes can be decomposed into their compo-
nent rotations to gain a better understanding of them as
follows. First we write the general deformation matrix
as:

W = WR ·Wn0 , (12)

where Wn0 is a rotation about n0 and n = WR · n0.

Using this in Eq. (7) results in the following expression
for the soft mode:

λ = `1/2 ·WR ·Wn0 · `−1/2
0 (13)

= WR ·Wn0 ·
[
`
1/2
n0,m′,l′ · `−1/2

0

]
, (14)

the second form arising from the same arguments that led
to Eq. (8) from Eq. (7). The factor in square brackets
here is the soft mode in which the secondary alignment
axes rotate around but the primary axis remains fixed.
It is given by:




1− (1− 1/
√

r⊥) sin2 φ (1−√r⊥) sin φ cos φ 0
(1/
√

r⊥ − 1) sin φ cosφ 1 + (
√

r⊥ − 1) sin2 φ 0
0 0 1




where φ is the angle that the secondary alignment axis
has rotated through and r⊥ = `1/`2 is a material pa-
rameter expressing the degree of biaxiality in the chain
anisotropy. The WR ·Wn0 that follows this deformation
is a trivial body rotation which we can neglect. Thus
all soft modes in biaxial SmA elastomers can be decom-
posed into a rotation of the soft mode that has the pri-
mary alignment axis fixed and a secondary rotation axis
displaced from its initial position.
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A. Example: Imposed λyy

For later comparison with the soft modes of a SmC
elastomer, we present the soft mode associated with an
imposed λyy. This mode has a fixed primary alignment
direction, n = n0, but a mobile secondary alignment di-
rection, m; see Fig. 2. The centre of the diagram depicts
the secondary alignment axis, m. Along the outside of
the diagram the shape of the biaxial SmA elastomer is
viewed from along the layer normal. Note that the max-
imum extension in the y direction is by a factor of

√
r⊥

and occurs when the secondary alignment axis has ro-
tated by φ = 90◦.

FIG. 2: The soft mode of a biaxial SmA elastomer of
anisotropy r⊥ = 2, with the layer normal out of the page.
The direction of the secondary director, m, is shown in the
centre. It rotates by φ = 30◦ from one image to the next.

IV. SMECTIC C ELASTOMERS

For SmC elastomers we extend the SmA elastomer
model presented in section II. Now the director is tilted
with respect to the layer normal. We denote the layer
normal by k, the director by n and the direction in
which the mesogens are tilted in by c, all unit vectors
(see Fig. 3). Thus if the director has a tilt angle of θ
then:

n = k cos θ + c sin θ . (15)

The constraint (6) on the layer spacing (4) must still
be obeyed, but this does not constrain the whole of the
director now, giving scope for soft modes.

Here we use a uniaxial tensor to represent the polymer
shape anisotropy for simplicity. However, in the SmC
phase there are two distinguished directions, the layer
normal and the director, which should alter the polymer
shape anisotropy. Thus it is anticipated that the shape
tensor should really be biaxial. However we shall find

n

c

k

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������θ

FIG. 3: In an SmC elastomer the director, n, is tilted with
respect to the layer normal, k by an angle θ.

that novel soft elasticity already arises because of the bi-
axial arrangement of a uniaxial ` about the layer normal.
The same qualitative behaviour is expected for a truly
biaxial ` as that generated below by the simplification
we follow, that is of a uniaxial ` constrained to be tilted
at a fixed angle to the layer normal.

Another term in this model penalising the tilt of the
director away from making an angle θ with the layer nor-
mal could be included. However, since the main concern
here is soft modes, deviation from tilt θ with any energy
cost would remove softness during deformation. Conse-
quently, this term is not included here and, as with the
layer spacing, the tilt angle is simply regarded as being
fixed. In any event, away from the SmA → SmC tran-
sition it is expected that the modulus associated with
changes in θ is very high.

A. General form of soft modes

Our model of SmC elastomers has underpinning ne-
matic rubber elasticity with constraints of constancy of
layer spacing. We again start with general soft modes
of nematic elastomers Eq. (7), with the constraint on
λ Eq. (6). We introduce a new auxiliary vector, w0 =

l
1/2
0 · k0, much as we introduced the auxiliary n′ to the

director n. With the help of `
1/2
0 = (

√
r − 1)n0nT

0 + δ

one has:

w0 = l
1/2
0 · k0 = k0 + (

√
r − 1) cos θn0 . (16)

Thus n0, k0 and w0 lie in the same plane, with w0

between n0 and k0 for r > 1. The modulus of w0 is not
unity but rather w2

0 = 1 + (r − 1) cos2 θ.
Inserting the general soft mode (7) into the layer spac-

ing constraint, Eq. (6), and using w0, one obtains:

wT
0 ·WT · l−1 ·W ·w0 = 1 (17)

The tensor `−1 = ( 1
r − 1)nnT + δ can be injected into

Eq. (17), whence 1 = ( 1
r−1)[nT ·W ·w0]2+wT

0 ·w0. Using

w2
0 = 1+(r− 1) cos2 θ, this constraint can be rearranged

into the more transparent form:
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(W ·w0)T · n = ±√r cos θ. (18)

That is, (18) is the equation of two planes that are a dis-
tance: ±1/

(
1 + 1

r tan2 θ
)1/2 from the origin with normal

vector along the W · w0 direction. Additionally the di-
rector is a unit vector and thus the allowed directors n
after distortion sit on the intersection of the planes with
the unit sphere n ·n = 1. These circles of intersection are
always guaranteed since the distance of the planes from
the origin is less than unity.

The constraint of constant layer spacing having been
implemented, we now need to ensure that the direction
of the layer normal changes affinely with the matrix,
Eq. (3). The new layer normal follows from

k =
λ−T · k0

|λ−T · k0| → λ−T · k0 (19)

which is a normalised form of the transformed layer
wavevector, Eq. (3), and simplifies as shown if the layer
spacing is fixed, that is d/d0 = 1 in Eq. (4) which means
equally that Eq. (6) is satisfied. When considering a par-
ticular soft deformation constructed by choosing a par-
ticular W in Eq. (7), the above determines the choice of
W if we want to achieve a desired n and k:

We insert a soft λ−T into this expression for the new k.

It is λ−T = `−1/2 ·W · `1/2
0 , on inverting and transposing

(7), whereupon the normal becomes k = `−1/2 ·W ·w0.

Multiplying both sides from the left by `1/2, and using

the explicit form for `1/2 and recalling n · k = cos θ, one
obtains

W ·w0 = k + (
√

r − 1) cos θn, (20)

Thus the three vectors W · w0, k and n obey a the re-

lation of the same form as Eq. (16). This motivates the
definition of a new auxiliary vector W ·w0 = w.

The allowed soft modes correspond to the points where
the two planes defined in Eq. (18) intersect a sphere.
To analyse the soft modes first the case without W is
studied, followed by the more general case of those modes
including a matrix W .

1. Geometrical interpretation of soft modes of the form

`
1/2
n · `−1/2

0

The algebraically simplest (but certainly not physically
simplest) soft modes in an SmC elastomer are those with-
out a W matrix. In this case the final director must lie

on the intersection of the unit sphere and the planes of
Eq. (18). An illustration of this is shown in Fig. 4. The
figure shows the initial director n0 and the initial layer
normal k0 and two circles on the surface of the sphere,
corresponding to the final positions of the director and
layer normal that obey the layer constraint. Note that

m0 k0

n0

k

n

FIG. 4: An illustration of the director orientations that satisfy
the layer constraint.

not all final positions of the director are possible with
soft modes of this form. The appropriate W must be in-
cluded such that the required final director position still
obeys the layer constraint.

2. Geometrical interpretation of general soft modes of the

form `
1/2
n ·W · `−1/2

0

It is convenient to break the W down into two com-
ponent rotations in order the exploit the simple case
above, followed then by a body rotation. Thus if W =

WR ·Ww0 (ξ), where the latter is a rotation by ξ about
w0, we can write a general soft mode as:

λ = `1/2
n ·WR ·Ww0 (ξ) · `−1/2

0 . (21)

We multiply the right hand side from the left by unity
in the form WR ·Ww0 ·WT

w0
·WT

R. Regrouping the W

terms rotates `
1/2
n to `

1/2
n′ = WT

w0
·WT

R · `1/2
n ·WR ·Ww0 .

Then (21) rearranges to:

λ = WR ·Ww0 (ξ) · `1/2
n′ · `−1/2

0 . (22)

Specifically one has applied the rotations WT
R · n → n0

and WT
w0
· n0 → n′. Thus the definitions of the rota-

tions are Ww0 takes n′ to n0 and WR takes n0 to n.
The power of this method is that we can take any of the
`
1/2
n′ · `−1/2

0 soft modes previously generated, see Fig. 5,
to generate the shape change that is now defined by a
single parameter, the rotation angle ξ. The rotation WR
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k0

n0

n’

0m

ξ

FIG. 5: The first stage of the calculation of a general soft
mode: rotating the initial director n0 around to n′.

that will determine the final director is not involved with
this first stage. Then one can then independently select
a general final director that is not confined to the circle
about w0 by applying WR to n0, see Fig. 6. Having de-

n0 n

R

FIG. 6: The figure shows the second stage of the calculation
of a soft mode: a general rotation about the axis R.

cided where the final director is to point, one then applies
the body rotation WR ·Ww0 (ξ) to the softly deformed

sample to complete the deformation (22).
The element of body rotation of the soft mode can be

separated out, leaving just a symmetric deformation, by
using the polar decomposition theorem:

λ = `
1/2
n′ · `−1/2

0 = U · S, (23)

where U is a rotation matrix and S is a symmetric ma-
trix. The rotation axis for this decomposition must be
in the n′ × n0 direction. We can use this information to
construct UT ·λ and demand that it is symmetric to find
S. The resulting rotation angle is given by:

tanα =
(1−√r)2(n0 · n′)

√
1− (n0 · n′)2

(1 + r)− (n0 · n′)2(1−
√

r)2
(24)

Now a particular example of Eq. (21) is considered. Here
rigid clamping constraints are not included so there is no
formation of microstructure.

B. Example: Imposed λyy

To illustrate the soft modes we could choose to impose
an elongation in any direction, provided the director has
scope to rotate into that direction and thereby to extend
the sample. This excludes stretches parallel to the n0

direction. An elongation perpendicular to the layer nor-
mal is particularly simple because it does not induce the
layer normal to rotate.

An extension in the y direction is imposed on an elas-
tomer with its layer normal in the z direction and the
in-plane component of the director in the x direction, i.e.
c = x initially. We take a deformation matrix is of the
form:

λ =




λxx 0 λxz

λyx λyy λyz

0 0 λzz


 , (25)

where the components λxy and λzy are not included. This
is because these λs deform the sample by translating the
y faces of the sample in the ±x and ±z directions. Any
small y forces associated with the yy elongation would
generate counter torques and quickly eliminate the λs.
The λzx component is excluded because without com-
pensating elongation in the z direction it would compress
the layers, as well as rotating a component of the director
perpendicular to the stretch direction.

The initial orientation of the layer normal and the di-
rector are given by:

n0 = (sin θ, 0, cos θ) (26)
k0 = (0, 0, 1) (27)

where θ is the tilt angle of the director (typically around
20◦). The current orientation of the director is assumed
to be

n = (sin θ cos φ, sin θ sin φ, cos θ) , (28)

and the layer normal, k unmoved. The layer normal
(k0 = z) cannot be moved by deformation tensors of
the form Eq. (25) since it must be derived from the ex-
pression k = λ−T · k0. In addition, the only consistent
rotation matrices WR that leave the layer normal un-
moved, must have their rotation axis, r, parallel to k0.
This rotation must take n0 → n. Thus WR can be iden-
tified as a rotation of angle φ around an axis parallel
to k0. Bearing this in mind, one constructs the tensor
λ = WR ·Ww0(ξ) · `1/2

n′ · `−1/2
0 (for the details of this see

appendix). The only remaining variable is ξ, and this can
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be determined by demanding that λxy = 0 in the above
expression for λ. This yields the following equation for ξ

0 = cos ξ sinφ+

√
1 + r + (r − 1) cos 2θ

2r
cos φ sin ξ. (29)

Using this expression for ξ all the components of the de-
formation tensor can be obtained. Writing ρ = sin2 θ +

r cos2 θ, and a(φ) =
√

cos2 φ + ρ
r sin2 φ we have the fol-

lowing matrix for λ




a(φ) 0 (r−1) sin 2θ(−a(φ)+cos φ)
2ρ

(1− ρ
r ) sin 2φ

2a(φ)
1

a(φ)

(r−1) sin 2θ

 
− (1− ρ

r ) sin 2φ

2a(φ) +sin φ

!
2ρ

0 0 1


 .

This tensor is explicitly constructed to be a soft mode
and evidently has det[λ] = 1. To illustrate this mode
Fig. 7 shows how this sample deforms for various different
azimuthal angles, φ. The figure gives a view of a block
of SmC rubber down the layer normal and should be
compared with Fig. 2. Note that even after a rotation of
the director of φ = π the rubber does not return to its
original configuration. Because of the tilt of the director
w.r.t. the layer normal a strain λxz < 0 is generated
after φ → π and this component has a cos φ term. By
contrast λxy = λzy = 0 and λyy = 1 at φ = π, indeed
λzy depends on 2φ. At the intermediate value of φ =
π/2 the elastomer has contracted along the direction of
the original anisotropy tensor and so has developed a
shear in both the λxz and λyz directions. The maximum
extension in the y direction occurs at φ = π/2, when

the λyy component takes the value
√

r/(sin2 θ + r cos2 θ).
For the case with θ = 30◦ and r = 2 this gives a maximum
extension of roughly 7%.

FIG. 7: An illustration of the soft mode of a SmC elastomer.
In this case the layer normal remains out of the page and the
c direction is shown in the centre of the diagram. A tilt angle
of θ = 30◦ and an anisotropy of r = 8 were chosen.

V. CONCLUSIONS

We have presented a geometrical interpretation of the
soft modes predicted in two phases of smectic elastomers.
It was found that there is only one soft trajectory for the
director, excluding body rotations, as a consequence of
the restrictions imposed upon the elastomer by the fixed
layer constraint. Specific examples of this mode were pre-
sented for a monodomains of biaxial SmA or SmC. They
can respond softly to a single imposed component of the
deformation tensor. An illustration of imposed λxx was
given but in principle we could impose any other compo-
nent, including λzz, through a combination of the single
soft trajectory and a body rotation. The experimental
boundary conditions of fixed ends near the clamps mean
that any soft mode will be accompanied by microstruc-
ture, as is frequently the case in nematic elastomers.

APPENDIX: DETAILS OF THE DEFORMATION
MATRIX

Here we give details of the calculation of the deforma-
tion tensor required for a soft mode when the λyy com-
ponent is imposed. The following vectors are required:

k0 = (0, 0, 1) (A.1)
c0 = (0, 1, 0) (A.2)

w0 = `
1/2
0 · k0 (A.3)

c = (cos φ, sinφ, 0) (A.4)
k = k0 (A.5)

From these vectors we can calculate the rotation matri-
ces:

WR = δ cos φ + (1− cos φ)k0kT
0 + (sin φ)k0 ∧ (A.6)

Ww0 = δ cos ξ + (1− cos ξ)w0wT
0 + (sin ξ)w0∧ (A.7)

Using the expression given in Eq. (21) we obtain the fol-
lowing:
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


cos ξ cosφ−√
ρ
r sin ξ sin φ −

√
r
ρ cos φ sin ξ − cos ξ sin φ (r−1) sin 2θ

2ρ

(
cos φ(1− cos ξ) +

√
ρ
r sin ξ sin φ

)
√

ρ
r cos φ sin ξ + cos ξ sin φ cos ξ cosφ−

√
r
ρ sin ξ sin φ (r−1) sin 2θ

2ρ

(−√
ρ
r sin ξ cos φ + (1− cos ξ) sin φ

)

0 0 1




To determine ξ we demand that the λxy component is
zero and obtain the matrix given in the text.
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