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A detailed theoretical and experimental analysis of the decay of electroconvection patterns is pre-
sented in a planarly aligned nematic liquid crystal. The relaxation time is measured as a function
of the wavenumber of the pattern using a light diffraction technique. A theoretical analysis exhibits
a rich structure of the dispersion curves for the decay rates. An interesting relation between the
realistic case of no-slip boundary conditions and the simpler free-slip case is found. The experi-
mentally determined relaxation rates for both ’conductive’ and ’dielectric’ initial patterns follow the
theoretical solution with subsequent jumps between branches when the wavenumber is increased.
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I. INTRODUCTION

Systems far from equilibrium often respond to excita-
tions by creating spatially periodic patterns. Anisotropic
fluids - like nematic liquid crystals - are especially rich in
pattern forming phenomena [1]. The mean orientation of
the elongated nematic molecules or equivalently the local
optical axis is described by the director n with n? = 1.
Electroconvection (EC) driven by an AC voltage applied
across a thin (thickness d ~ 10 — 100m) nematic layer
is a common example of pattern forming instabilities [2].
EC is a threshold phenomenon which usually occurs as a
primary instability in a slightly conducting nematic with
negative dielectric and positive conductivity anisotropies
(or vice versa [3, 4]). The pattern then appears at onset
in the form of a periodic array of parallel convection rolls
(wave number ¢) coupled to a periodic modulation of the
director orientation, which results in a sequence of dark
and bright stripes observable in a microscope. Varying
the easily tunable control parameters like the AC-voltage
(rms amplitude V, frequency f), magnetic field, temper-
ature, etc. a wide variety of scenarios can be generated
which makes electroconvection a popular model system
for pattern formation studies. In particular the charac-
teristic wavenumber ¢ of the patterns depends sensitively
on f.

When the excitation is turned off the roll pattern de-
cays as the system returns to its equilibrium (usually
homogeneous) state. Though the relaxation time 7 char-
acterizing this decay process gives important insight into
the nemato-hydrodynamic mechanism, it has so far not
been analyzed systematically. It will be demonstrated in
this paper, where we focus in particular on the depen-
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dence of 7 on ¢ that such an analysis gives interesting
new insights.

The various mechanisms responsible for EC are ac-
tive on different characteristic time scales. The slow-
est time scale is given by the director relaxation time
Ty = Igllld;, which sets the time scale for director reori-
entations, where 1 denotes the rotational viscosity, and
K1 1s the splay elastic modulus. The charge relaxation
time 7, = “2°+ is considerably shorter than 74 (€L is the
dielectric permittivity and o, the conductivity compo-
nent perpendicular to the director). The viscous relax-
ation time 75, = d2/1/ characterizing the viscous damp-
ing (v is the kinematic viscosity) of flow is much shorter
than the other time scales, so the velocity field can be
treated adiabatically. In some situations (not considered
here), when one is for instance in (or near to) the regime
where traveling waves appear at onset, the treatment of
a nematic as an ohmic conductor is insufficient. Then
an additional time scale related to the recombination of
charge carriers 7. becomes relevant (WEM-model [5]).

Ideally all of the above processes contribute to the
decay time, making the process very complex. Fortu-
nately the fast processes (charge relaxation and the vis-
cous damping) contribute only at the very beginning of
the decay process, whereas the only relevant time scale at
the later stage of the relaxation process is expected to be
74. Thus, the process is expected to be rather universal,
independent of the excitation mechanism. In fact, the
only relevant quantity determining the long-time decay
should be the wave number ¢, which (ideally) remains
unaltered during the decay. Comparing the theoretical
predictions with experiments could even be used to de-
termine material parameters such as the viscosity (Leslie)
coefficients.

The theoretical task of determining the asymptotic de-
cay times of a pattern with nonzero wave number is in
principle straightforward and conceptionally less compli-
cated than the problem of EC, since only the director
deformation and the flow field (back flow) are involved.
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In addition the pattern amplitudes continuously decrease
when the decay process advances, thus the analysis can
be based on the linearized nemato-hydrodynamic equa-
tions. Nevertheless so far the problem has been treated
in the literature only in a ’single mode’ approximation
(SMA) where the boundary conditions for the velocities
are not implemented properly [6, 7].

Experimental studies of EC patterns are most often
based on recording and digital processing of (stationary)
shadowgraph images in a polarizing microscope. In the
present experiment we have to resolve fast decay of low
contrast (small deformations) patterns. The standard 25
Hz (or slower) video rate of common analog and/or digi-
tal cameras impose a strong constraint on the recording
speed and the typical 8 bit video digitization may also
not provide sufficient gray-scale resolution. The shad-
owgraph technique is therefore less appropriate for the
analysis of the decay process unless special instrumenta-
tion is used.

On the other hand EC patterns represent a periodic op-
tical grating. Illuminating them with a monochromatic
(laser) light beam results in a diffraction pattern. The
intensity [, of the nth order fringe is for not too large
pattern amplitude 9, given by

I, = B, [Jn(Qﬁm)r, (1)

where J, is the Bessel-function of first kind of order n,
while the quantities B, and ) depend on the refractive
indices, the angle of incidence and the shape of the di-
rector profile[11, 12]. In the limit of small ¥,,, which is
relevant for our study, we have I, o ¥2?. Thus the I,
for small n prevail. For symmetry reasons only the even
order fringes are visible (at least for small deformations)
at normal light incidence [8-11]. For oblique incidence
[11, 12], however, the odd order fringes (in particular
n = 1) become accessible, which thus present a sensitive
tool to monitor variations of EC pattern amplitudes near
the threshold.

Based on these considerations an interesting optical
method has recently been proposed to measure the relax-
ation times 7 by diffraction on EC patterns [7]. The ini-
tial roll pattern has been induced by periodically switch-
ing the DC voltage between positive, zero and negative
values. The intensities of low-order fringes have been
recorded, which have shown a sawtooth-like modulation
due to the periodic reorientation of the director (growth
and decay of the pattern) and the relaxation time has
been obtained by fitting to results of the SMA approach.
The method has only been applied to a single switching
frequency of the excitation where 7 is claimed to match
the theoretical value. The analysis would have been
more convincing, if by varying the switching frequency
the wavenumber ¢ of the EC pattern (which is a crucial
parameter for 7) had been systematically changed.

The approach in Ref. [7] has some disadvantages.
Firstly, it captures only the beginning of the decay pro-
cess where one cannot expect a single time-exponent to
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govern the dynamics. Furthermore, the theoretical anal-
ysis makes use of the SMA, which, although quite effec-
tive for the description of the EC state near threshold, is
questionable for the relaxation process.

The work presented in this paper has two aims. On the
one hand the experimental technique was improved, us-
ing sine wave AC voltage excitation that allowed to mea-
sure the wavelength dependence of the relaxation times
in a wide ¢ range. Moreover we focused on the late stage
of the relaxation process, which should be determined by
a single relaxation time. On the other hand we present a
rigorous theoretical analysis of the relaxation time prob-
lem with proper handling of the boundary conditions.
The results given in Section II reveal some surprising
features.

We want to stress again that though the pattern was
created by electroconvection, the relaxation occurred in
the absence of electric field. Thus the results obtained
are valid for the decay of any other patterns which are
characterized by periodic splay-bend deformation of the
director (e.g. shear flow induced convection rolls).

II. THEORY OF THE DECAY

The system under study is a nematic layer of thick-
ness d confined by plates parallel to the # — y plane. We
assume strong planar anchoring of the director at the
bounding plates in the z direction, so in the rest (i.e.
basic) state the director (n = (ny,ny,n,)) is given as
n = (1,0,0). We consider a situation where a spatially
periodic pattern with wavevector q = (¢, p) in the z — y
plane has been generated, e.g. by electroconvection. We
will discuss in general terms the relaxation process af-
ter switching off the excitation. One is then left with
the standard nematodynamic equations for the Cartesian
components of the director field n and of the velocity field
v = (vg, vy, v, ), see e.g. [13-15]. We will use dimension-
less units. The unit of length is chosen to be d/x, time
1s measured in units of the director relaxation time 74,
elastic moduli are scaled with the splay elastic constant
K1, viscosity coefficients by the rotational viscosity 7;.

Here, we restrict ourselves to normal roll patterns with
p =0 (no y dependence). Thus all fields depend only on
x and z. The y components of n and v vanish. In the ne-
matodynamic equations linearized about the basic state,
which are sufficient for the late stage of the decay process
the dependence on « becomes harmonic, e.g n;(z, z,t) =
n.(z,q,t)sin(qe), v, (x,2,t) = 0,(x,q,t)cos(qr). Since
the decay process is slow compared to the viscous re-
laxation time Tyi5¢, time derivatives of v can be (adia-
batically) neglected. After eliminating v, with the help
of the incompressibility condition V - v = 0 we arrive at
the following linear equations:

[6t + [(33(]2 - 33]9@2 (Za Qat)
— [a2q2 + ozgaf]ﬁz(z, ,1)=0, (2
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[aaq® + a30Z1qdin.(z,q,1)
- [77263 - 777‘q263 + 771(]4]17z(2a Qat) = Oa (3)

where

m = (—astas+as)/2; n=(as+ as+a6)/2;
7 = m+n+a (4)

are effective (Miesowicz) shear viscosities. Note that the
correction to ny = 1 (basic state) vanishes at linear order.
In the following the bars in n, and v, will be suppressed
for simplicity.

These equations have to be supplemented with realistic
rigid boundary conditions, i.e. strong planar anchoring of
the director and no slip for the velocities at the bounding
plates at z = +7/2 in dimensionless units:

z==+n/2. (b)
0 and

n,=0, v,=0, J,v,=0 at

The last condition follows from wv,(+7/2) =
V-v=0.

The velocity component v, can be eliminated yielding
a partial differential equation for the director component

n.(z,q,t)
[(a20” 4+ a302)” — (10207 — 0,¢°0% + mg*)]qOens (2,4, 1)
— [0 = 0 q0? + mq*](Kssq® — 02)qn.(z,q,) = 0.(6)

Equation (6) allows modal solutions in exponential
form n,(z,q,t) = n(s,q)e"#*e!** (analogously one has
v, (2,q,t) = v(s, ¢)e " #e'*?). Thus we arrive from Eq. (6)
at the following dispersion relation:

(Oézqz—a?)é‘z)2ﬂ+(77284+77rq252+771q4)(K33q2+82—ﬂ) :( (3
7

Clearly Eq. (7) involves only two independent variables
s2/q¢? and u/q®. Obviously one can superpose modes
with s and —s to yield real solutions with a given parity
(reflection symmetry in z). From Eq. (2) we see that the
amplitudes n(s, ¢) and v(s, ¢) of the modal solutions are
related by

n(s,q) = G(s,9)v(s, ) (8)
with
a2q2 — Oé382

(K33¢? + 52— p)’

G(s,q) = (9)
q

In a rigorous treatment one has to take into account
that Eq. (7) is a cubic equation in s?, which provides
three roots (s7, s3 and s3) for each p and ¢ which are
to be superposed to satisfy the realistic no-slip boundary
conditions. We expect that only situations where n, and
v, are even functions of z will be of relevance. Thus, the
exact solution of the decay problem is a linear combi-
nation of cosine functions constructed from the roots of

Eq. (7),

n,(z,t) =
vy (z,t) =

eTMN(z) = e_“tEizlAjGj cos(s;72)

eV (z) = e MEE_ Ajcos(s;jz)  (10)
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with Gy = G(si, ¢) calculated from Eqgs. (8),(9). Combin-
ing Eq. (5) with Eq. (10) a set of 3 homogeneous linear
equations are obtained for the weights A;, As and As.
A non-trivial solution exists if the corresponding deter-
minant vanishes. Thus one obtains a discrete eigenvalue
spectrum pui (¢%), k = 1,2,... with the corresponding
eigenfunctions Ny (z) and Vi (2) (see Egs. (10)). As to be
expected the py are found to be real and positive. We
will order them in increasing magnitude (p1 < pt2 < ...)
in the following.

Before we discuss the resulting eigenvalue spectrum in
detail, which requires numerical calculations, we will ad-
dress the situation in the SMA approximation. This case
is obtained by replacing the last condition in Eq. (5) by
0?v, = 0, which corresponds to the unrealistic case of
zero tangential stress on the velocity field ("free slip”).
Then the even eigenfunctions Ny (z), Vi(z) are propor-
tional to cos(Skz) with S, = 2k —1, k = 1,2,3,...,
independent of ¢2. Thus the s in the dispersion relation
can be identified with Si and for the free-slip eigenvalues
fix(q?) one obtains

_ HE
HEe = 1= by

(a2q” — a3)*S}

NS¢ + 14252 + gt

with i = S? + K33¢?,

b =

(11)

Note that fi; coincides with the growth rate (properly
nondimensionalized) on which the analysis in Ref. [7] was
based (see Eq. (7) there). Also note that ji presents a
set of purely elastic (no back flow) decay rates. Thus fi;
gives the slowest decay mode in this limit of vanishing
viscosities. The (positive) quantities by describe the en-
hancement of the decay by back flow. Whereas fi; should
underestimate the actual decay constant, p; is expected
to give a bound from above, since the free-slip boundary
conditions are less restrictive than the rigid ones to the
flow field.

A surprising feature appears when the higher branches
it of the SMA are considered. Figure la displays the 10
first branches (ji1, ..., jt10) as a function of ¢2 for the
parameter set of Phase 5/5A listed in Table I. One sees
that the "natural” ordering j1; < fis < iz < ... applies
only for small ¢?. With increasing ¢ the higher-indexed
branches jig(g?) cross all the lower-indexed ones. Thus,
each branch becomes the lowest within some interval of
¢?>. The explanation for this behavior is that for the
slowest mode the spatial variation along «, characterized
by ¢, are balanced by a corresponding variation along
z, characterized by Sj. Clearly there exists an envelope,
which bounds all SMA branches from below. For large ¢
the envelope becomes a straight line through the origin
whose slope is determined by the minimum of jix /q? for
large ¢? minimized over k. This minimum is obtained by
treating Sy as a continuous variable and minimizing ji,
which gives Min(ji/q*) = E = 4.2285 at S? = 1.0493¢>
for our material parameters.

Returning to the rigorous eigenvalue spectrum g (¢?),
Figure 1b displays the lowest 10 branches (p1, ..., p1o)
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FIG. 1: Theoretical values of the dimensionless decay rate of the director distortion versus dimensionless ¢° calculated for the
parameter set of Phase 5/5A. a) The 10 lowest f branches of the dispersion relation for the case of free-slip boundaries. b)
Solid lines show the 10 lowest px branches of the dispersion relation obtained from the rigorous calculation. Dashed and dotted
lines correspond to the SMA branch fi; and to the flow free case (fi1), respectively. The inserts show the corresponding lowest

3 branches enlarged for low ¢°.

TABLE I: The material parameters of the nematic Phase
5/5A used for the numerical calculations.

Quantity Unit Value at 30°C Reference
Kn 10712N 9.8 [16]
K3 ? 12.7 ?

a; 10~*Ns/m? -39 [16]
s ” -109.3 [16, 17]
as ? 1.5 ?
g ? 56.3 ?
ag ? -24.9 ?

as a function of ¢? (solid lines, parameter set of Phase
5/5A). The decay rates fi; (SMA) and fi; (no back flow)
are also shown (dashed and dotted lines respectively).
The rigorous solution offers modes with smaller eigenval-
ues py (longer decay) than fiy. In fact the lowest branch
p1(¢?) remains below fi1(¢?) for any ¢2, see also the inset
(actually, p1(g?) remains below all jig(¢?), see below).
As expected, ji; gives a lower bound. For k > 1, each g
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branch crosses fi; at some ¢? and in that neighborhood
the slope increases and approaches that of fiq, so that the
two curves remain close to each other (with py > i) in
some ¢ interval. For k = 2,3,... these intervals follow
each other and build up an almost continuous line run-
ning just below iy (for large k the effect becomes more
pronounced).

More generally, the branches g (g?) consist of alter-
nate pieces with higher and lower slopes forming a step-
like curve. The branches do not touch or cross each other.
One notices a close similarity with the structure of the
SMA curves in Figure la. There, however, the curves
cross each other. Substantial deviations occur only in
the vicinity of the crossing points of the branches ji (¢%).
In fact, it is quite common in physics that a dispersion
relation 1s composed of crossing branches in some ”unper-
turbed” approximation while the rigorous solution of the
same problem results in combination of the branches and
gap formation at the crossing points (see e.g. the elec-
tronic band structure in crystals in the nearly-free elec-
tron limit). Here the unperturbed problem corresponds
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to the free-slip case. Indeed, for ¢ >> 1, the influ-
ence of no-slip boundary conditions is in effect a small
perturbation that becomes important near the points of
degeneracy (the crossings) of the unperturbed eigenval-
ues.

It follows from Eq. (10) that the eigenmodes
Ni(z,9), Vk(z,¢)) are not simple harmonic functions of
z. In Figure 2 the function Ny(z) is shown for the lowest
branch p; at ¢ = 1, 10, and 100. At small ¢, where y; is
close to fi1, one has Ny(z) ~ cos(z). This changes dras-
tically as ¢ increases, where Ni(z) eventually develops
into a boundary layer (this is the case for k = 1 only, see
below). In general we can identify an index kg associated
with a certain ¢%-interval where iz, is close to ji;. Within
that interval the corresponding eigenmodes Ni,(z) are
dominated by a contribution ~ cos(z) superimposed with
oscillations ~ cos(2kgz) of small amplitude. To the left
of those intervals the contribution ~ cos(z) eventually
vanishes and the eigenmodes are dominated by a fast
oscillation ~ cos[(2ky — 1)z] . To the right of those
intervals the cos(z) contribution shifts towards cos(3z)
though with small amplitude superimposed with a strong
~ cos[(2ko+1)z]. The profiles Niy(z) shown in Fig. 3 for
q? = 58 (inside the interval ko = 10), 40 (below interval)
and 76 (above interval) demonstrate this effect. More
generally, the eigenfunctions on the jth steep portion of
the pg branches become approximately proportional to
cos((25 — 1)z) with j = 1,2,..., while on the next flat
portion a cos((2(k+j)—1)z) dependence dominates. One
may conclude that an exact eigenfunction N;(z, ¢) is sim-
ilar to a SMA eigenfunction cos(2k — 1)z whenever the
eigenvalue y;(¢?) is near to jix(¢%).
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FIG. 2: Normalized director profile N;(z) belonging to the
p1 mode calculated for the parameter set of Phase 5/5A at
¢ =1, 10 and 100 respectively.

Interestingly, for not too small ¢?, the lowest branch
p1 remains separated from the rest (and separated from
all SMA branches). This can be understood most eas-
ily by looking, in the limit ¢> — oo, at the quantity
Min(jix/q?) = = from another side. = corresponds to
the point where u/q?, as given in the dispersion relation
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FIG. 3: Normalized director profile Nig(z) belonging to the
p10 mode calculated for the parameter set of Phase 5/5A at
¢° = 40, 58 and 76 respectively.

Eq. (7) as a function of 5%, has a minimum, i.e. where two
roots s? and s2 of the dispersion relation coincide (note
that the s? scale with ¢?). Below this point (p/¢? < =)
the dispersion relation has two complex conjugate roots
s? and s2 and a negative root s3. Thus all 51, 52, and s3
have (substantial) imaginary parts so that the e/ decay
rapidly either to the left or to the right depending on the
choice of sign. Then one can construct, at some value
of p (= p1 = 3.8801¢%) a solution of the problem that
decays away from either boundary and which represents
a boundary layer solution. For p/¢? > = the complex
conjugate pair becomes real. Near = their difference is
small and their superposition describes a slowly modu-
lated, rapidly oscillating function (the rapidly decaying
contribution from s3 remains localized near to the bound-
ary). This gives the branches ps, i3, ..., which are char-
acterized by an increasing number of modulation periods.
In the limit of large ¢? they form a quasi continuum, well
separated from .

The knowledge of the decay rates is not sufficient to
describe the decay process fully. Firstly one needs the
initial state before switching off the voltage, which in-
volves solving the full linear (for small ¢) EC problem
as a function of frequency for the given nematic. This
is numerically cumbersome, in particular in the ’dielec-
tric’ (large ¢q) regime. The initial condition determines
the expansion coefficients A; (see Eq. (10)). Since the
eigenvalue problem Eqgs. (2), (3) is not self-adjoint one
has to solve the adjoint problem as well. Finally the con-
tribution of the different modes to the intensity of the
fringes has to be calculated following e.g. the methods
presented in [10, 11]. The corresponding detailed analysis
is presently under way.
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III. EXPERIMENTAL

In order to cover a large range of decay rates p and/or
wave numbers ¢?, the decay of EC patterns was inves-
tigated in planar samples of the nematic mixture Phase
5 (Merck) and on its factory doped version Phase 5A.
These substances are popular in the investigation of EC,
since they are chemically stable and their material pa-
rameters are well characterized [16, 17].

Planar cells were assembled using rubbed polyimide
coated electrode surfaces made by E.H.C. Co. The trans-
parent I'TO electrodes covered a surface of lcm#lcm. The
thickness d of the cells was adjusted by nylon spacers, and
was determined by an Ocean Optics spectrophotometer
before filling.

EC was driven by sinusoidal voltage synthesized by a
function generator PC card through an electronic switch
and a high voltage amplifier. This switch allowed an
abrupt (within 10us) shutting down of the applied volt-
age. The actual AC voltage across the sample was mea-
sured by a digital voltmeter.

The sample was thermostatted by a PC controlled In-
stec hot-stage at T'= 30.0 £ 0.05°C. A beam of a laser-
diode of wavelength A = 650nm illuminated the cell on
an area of about Imm % 2mm. In the state of electro-
convection a highly regular diffraction pattern could be
observed as a sequence of light spots on a screen placed
normal to the beam at a distance of L = 660mm. As
the hot stage could be rotated around an axis in the
plane of the cell perpendicular to the director, diffrac-
tion at normal as well as at oblique incidence of light
could be investigated. Depending on the applied volt-
age diffraction fringes up to the 9th order could be seen.
At higher voltages, however, the diffraction spots grad-
ually became diffuse indicating the reduction of pattern
regularity (appearance of defects above the threshold for
secondary instabilities) and finally faded into an almost
uniformly scattering background (the turbulent, dynamic
scattering mode).

The higher sensitivity of diffraction at oblique inci-
dence could be clearly demonstrated by the fact that a
couple of diffraction orders were still visible at low volt-
ages where no fringes could be seen at normal incidence.
Therefore the measurements shown were carried out at
an angle of incidence g =5°.

In EC one usually observes two types of patterns, ’con-
ductive” and ’dielectric’ rolls. In the first regime (at fre-
quencies f below the cut-off frequency f.) the director
distortion is virtually stationary and the dimensionless ¢
is of the order of one, while in the latter regime (f > f)
n, follows the external AC frequency and ¢ >> 1 can eas-
ily be obtained. f. is roughly proportional to the electric
conductivity of the sample.

Using Phase 5A in a cell of d = 28um thickness EC
patterns of the ’conductive’ type existed in a wide fre-
quency range (10— 1380Hz). For f > 1200Hz the thresh-
old of the EC patterns grew steeply with the frequency.
Thus the highest accessible frequency (which was still be-
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low the cut-off) was practically limited by the maximum
sinusoidal output voltage (£160Vpeax) the high-voltage
amplifier could provide which was too low to enter into
the ’dielectric’ regime. Normal rolls, i.e. fringes along
a single line parallel to the director appeared above the
Lifshitz point fr. At low frequencies (f < fr ~ 200Hz)
oblique rolls were observed which resulted in diffraction
fringes aligned along two crossing lines as expected.

The wavelength of the pattern varied from A = 47.4pm
at low f to A = 16.6pum at the highest f = 1380Hz.
The dimensionless ¢ fell into the range 1.4 — 11.3. At
lower f the accuracy of ¢ was mainly determined by the
precision of distance measurements on the screen, while
at higher frequencies the increase of the fringe diameter
was the main limiting factor.

In order to study the large g regime we investigated the
decay of the ’dielectric’ rolls in a thinner (d = 9.2pm) cell
filled with Phase 5 having much lower electric conductiv-
ity. The ’dielectric’ regime occurred above f. ~ 100Hz.
The low frequency ’conductive’ regime with oblique rolls
occuring up to fr ~ 60Hz has not been examined in
detail. The wavelength of the ’dielectric’ rolls was sub-
stantially smaller than in the ’conductive’ regime (as
expected), and could be tuned from A = 4.6pum to
A = 2.9pum by increasing the frequency. In dimensionless
units a range from ¢? = 14 to ¢ = 38 has been covered.
At these smaller A the diffraction angles were higher and
thus fewer number of fringe orders were visible. In gen-
eral the diameters of the diffraction spots corresponding
to the ’dielectric’ rolls were noticeably larger indicating
less regular patterns. Note that the conductivities of the
two samples and the thickness of the cells have been cho-
sen in such a way that the (dimensionless) wavenumbers
q in the two regimes joined almost continuously (see also
Fig. 7.

In order to study the decay of electroconvection pat-
terns the intensity of the diffracted light was monitored.
An optical fibre (with a diameter of 1 mm) which was
positioned at the centre of the selected fringe (typically
the 1st order one) transmitted the diffracted light into a
photomultiplier working in its linear regime. Its output
was fed through a current-to-voltage converter into a 16-
bit A/D converter card. That allowed recording of the
intensity at high precision with adjustable sampling rate.

As already mentioned in the introduction, the light
intensity I, of an nth order fringe is proportional to
Um(t)?". Hence, assuming an exponential decay of the
deformation (¥, = ﬁoe_t/T) the characteristic time for
the intensity decay of the nth order fringe is given by
77 = 7/2n. Thus higher order fringe intensities decay
faster, moreover, their intensities (x ¥Z" ) are smaller
and more sensitive to nonlinear corrections. Conse-
quently we concentrated the detailed analysis on /; which
is accessible in the case of oblique incidence.

The wavelength A of the EC pattern can conveniently
be tuned by the frequency f of the excitation. At each f
first the EC threshold voltage V., was determined based
on visibility criteria. Then the voltage V' was raised by 1
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% which corresponds to a value of ¢ = (V? — V2)/V2 =
0.02 of the dimensionless control parameter. At this ¢
typically 4 diffraction orders were visible. A was then
determined by measuring the distances D, between the
nth order diffraction fringes and the main beam (zeroth
order) and using the condition for constructive interfer-
ence

A(sin 8 + sin(ay, — 8)) = nA, (12)

where f is the angle of incidence and a,, = arctan(D,, /L)
is the diffraction angle for the nth order fringe.

The detector was then positioned at the centre of the
1st order fringe (to the place of maximum intensity)
to monitor temporal variations. Data acquisition was
started at the instant of switching off the applied volt-
age. Figure 4 shows some examples of the decay curves
obtained when starting from different e values. Note that
the fringe intensity is not expected to grow monotonically
with ¢ (although ¥,, does so0), as the Bessel function in
Eq. (1) is an oscillating function of its argument. The
dotted curve in Fig. 4 indicates that at e = 0.066 the
deformation is already large enough to get past the first
maximum of Eq. (1) which explains the slight increase of
the intensity at the initial part of the decay.

40 T T T T
—35]{ f=12000z | |
RN XN
= 304 ™ £=0.009 | -
= —--- £=0.019
8 257 N e £=0.066 | |
g -
2 154 1
-a \‘
= 10- S :
2 ht
= 5 . ]
b T
0 T T sy
0 100 200 300 400 500
Time [ms]

FIG. 4: Temporal evolution of the light intensity of the 1st
order diffraction fringe I; following the shut-down of the ap-
plied voltage in a 28 pym thick cell of Phase 5A. Curves with
different line styles correspond to different initial value of the
dimensionless control parameter e (which sets the pattern am-
plitude).

In order to focus onto small deformations, however,
during measurements the gain of the A/D converter was
increased by a factor of 8. Furthermore, we zoomed in
on the tail (on values below 1/16 of full scale) of the
relaxation curve. This tail section which showed an ex-
ponential decay was finally recorded as 3000 points with
a 12 bit resolution. The sampling time was chosen so
that the recorded section corresponded to a period of
about 6 — 77;. Before processing the data they were
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smoothed by a sliding averaging involving 51 neighbor-
ing data points. This improved the signal-to-noise ratio
considerably while it did not affect the exponential shape
of the curve. Finally the relaxation time of the fringe in-
tensity, 77 = 7/2, was obtained by a least square fitting
of a single exponential. Figure 5 depicts an example of
the recorded data and the fitted exponential. The mean
square deviation of the experimental data from the fitted
curve Is typically less than 1 % of the full scale hence a
systematic deviation is almost undetectable in the figure.

—— Measured data

f=100Hz | Exponential fit
40901 At=51 ps 500 )
400
3000+ 300
200 =" S =N
2000 100

0
2500 2600 2700 2800 2900 3000
1000+

1000 1500 2000 2500 3000
Time (units of A7)

0 .
0 500

Intensity (arbitrary units)

FIG. 5: The tail of the decay curve with a fitted exponential.
The insert shows the final part in an enlarged form.

Despite of the good fit the relaxation times 7 obtained
from repeated recordings showed a typical scattering of
about 10 %. Therefore the results were averaged for 10
consecutive measurements (7) at the same frequency and
finally the dimensionless decay rate was calculated by
scaling with the director relaxation time (pezp = 22).

The procedure above could not be fully applied to the
thin cell in the ’dielectric’ regime. As a consequence of
the smaller wavelength of the ’dielectric’ rolls (which is
independent of d and is a combination of material pa-
rameters), their relaxation time turned out to be quite
short (0.14—0.48ms) compared to the minimum sampling
time (0.01ms) of the high resolution A/D converter card.
Therefore in this case a digital oscilloscope with an 8-bit
resolution was used to record the temporal evolution of
the fringe intensity and all recorded points (except those
saturating due to overdriving at the start of the decay)
were included in the exponential fitting.

IV. COMPARISON OF EXPERIMENTAL DATA
WITH THEORY

Figure 6 displays the measured data together with the
theoretical curves in the conductive range. Focusing on
the very end of the relaxation process we expected that
there the system decays with the slowest rate p; in the
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whole ¢ range because faster modes die out earlier. It
can be seen, however, that the measured points do not
follow the lowest branch of the dispersion relation (the
slowest decaying mode) except in the very low ¢ range
up to about 4. Neither do they follow the predictions of
the SMA as all points are below that curve. There are,
however, distinct ranges of ¢* where y,, data lie almost
perfectly on one of the branches provided by the rigorous
calculation (on py for ¢% < 3.5, on ps for 5.0 < ¢ < 6.7
and on pz for 8.0 < ¢? < 10.0).

80
70+ | ---- SMA ()

® 4 , Phase 5A, 'conductive'
e

10 11 12

FIG. 6: Theoretical and measured values of the dimensionless
decay rate p of the director versus dimensionless ¢° for Phase
5A in the ’conductive’ regime. Solid lines correspond to the
four lowest uk(q2) branches of the dispersion relation, the
dashed line shows the expectation of the SMA (fi1(¢?)). Solid

circles are the data for pteqp measured at sinusoidal excitation.

Figure 7 displays the measured decay rates together
with the theoretical curves for the whole ¢ range, includ-
ing the ’dielectric’ mode. The trend of the persistent
switching of ftezp to higher y; branches with increasing
¢° continues in the dielectric regime. This similarity is
actually not surprising, although the electroconvecting
state in the ’dielectric’ regime is crucially different from
that of the ’conductive’ one (e.g. the director tilt follows
the excitation frequency which can be nicely detected in
the oscillating intensity of the diffraction fringes), the
decay itself occurs under the same field-off condition in
both cases.

These data indicate that the assumption of the final
decay occurring with the slowest mode does not hold or
at least cannot be justified with the spatio-temporal res-
olution facilitated by our experimental set-up. Surpris-
ingly the slowest mode g1 1s not reflected in the diffracted
light intensity (except for small ¢?). Instead the decay
rate pix (¢%) with the eigenfunction N (z) closest to cos(z)
(with small superimposed oscillations as shown in Fig. 3)
dominates. Apparently this eigenfunction has the largest
overlap with the initial director field and thus provides
the largest weights A;. With increasing ¢? this eigenfunc-
tion appears at higher indices k of the eigenvalues pg. As
a result the system switches from one branch to the next.
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FIG. 7. Theoretical and measured values of the dimension-
less decay rate y of the director versus dimensionless ¢°. Solid
lines correspond to branches uk(q2) of the dispersion relation,
the dashed line shows the SMA result fi1(¢?). Solid circles
and open squares are the data for pesp measured in the 'con-
ductive’ regime of Phase 5A and in the ’dielectric’ regime of
Phase 5 respectively.

For ¢ in the switching region the measured ji;, falls in
between the branches indicating the absence of a single
dominating mode. Actually fitting the decay curves with
a superposition of more exponentials reduces the mean
square deviation slightly in those regions. Preliminary
calculations which follow the general scheme presented
at the end of Section II, show indeed that for ¢> = 10
(conductive regime, see Fig. 6) where y & ps the con-
tribution of this mode to the fringe intensity 7 is larger
by a factor 30 — 50 compared to the contribution of the
modes p1 and po.

V. CONCLUSIONS

A rigorous theoretical solution has been provided for
the problem of the decay modes of periodic patterns
in nematic liquid crystals. The proper handling of the
boundary conditions has yielded a dispersion relation
with a sequence of modes with different relaxation times
in contrast to the single exponential decay predicted by
the slowest SMA mode. The branches of the dispersion
relation have been calculated for the nematic liquid crys-
tal Phase 5/5A.

Laser diffraction at an oblique incidence has turned
out to be an excellent tool to monitor the decay process
experimentally. The decay rates have been measured in
a wide wavenumber range. Several distinct ¢ ranges have
been found where the relaxation of the pattern is char-
acterized by an exponential decay slightly slower than
that given by the SMA, but coinciding with one of the
calculated branches of the dispersion relation. That indi-
cates that the generally multimode decay is usually dom-
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inated by a single mode though somewhat different from
that provided by the SMA. This trend holds for both the
‘conductive’ and the ’dielectric’ regimes showing that the
type of excitation has only a minor influence on the de-
cay process. The detailed analysis of the impact of the
initial conditions including a theoretical decomposition
into modes is still under investigation.
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