
A Non-Local Model for Liquid Crystal Elastomers

R. Ennis1, L. C. Malacarne1,2, P. Palffy-Muhoray1 and M. Shelley3,
1Liquid Crystal Institute, Kent State University, 44242 Kent, OH - USA
2Universidade Estadual de Maringá, 87020-900 Maringá, Paraná - Brazil

3Courant Institute of Mathematical Sciences, New York University, New York, NY - USA

We have developed a fully non-local model to describe the behavior of nematic liquid crystal elas-
tomers. The free energy, incorporating both elastic and nematic contributions, is a function of the
material displacement vector and the orientational order parameter tensor. The free energy cost
of spatial variations of these order parameters is taken into account through non-local interactions
rather than through the use of gradient expansions. We also give an expression for the Rayleigh dis-
sipation function. The equations of motion, for displacement and orientational order, are obtained
from the free energy and the dissipation function by the use of a Lagrangian approach. We examine
the free energy and the equations of motion in the limit of long wavelength and small amplitude
variations of displacement and orientational order parameter. We compare our results with those
in the literature. If the scalar order parameter is held fixed, we recover the usual viscoelastic theory.

Liquid crystal elastomers (LCEs), first proposed by de Gennes[1] and synthesized by Finkelmann[2], are solid
orientationally ordered rubbers. They consist of weakly cross-linked liquid crystal polymers with orientationally
ordered side- or main-chain mesogenic units. The salient feature of LCEs is the coupling between mechanical
deformation and orientational order.[3]. As a result of this coupling, these materials can exhibit exceptionally large
responses to external stimuli, suggesting a variety of potential applications. These range from artificial muscles[4] to
mechanically tunable photonic band gap materials[5] and bifocal contact lenses [6].
Much of the experimental and theoretical work on LCEs has been carried out during the past decade. Equilibrium

properties are relatively well understood, but dynamic phenomena have not yet been thoroughly characterized. Since
these often involve large deformations and complex viscoelastic behavior, they are incompletely understood . In
nematic LCEs, both scalar order parameter and director orientation are coupled to the mechanical deformation.
At temperatures far from the nematic-isotropic transition, strain induced changes of the scalar order parameter are
typically small, and frequently assumed to be spatially uniform[7]. However, some of the most interesting aspects of
nematic elastomers, such as changes in shape due to excitations, are associated with non-uniform changes in the order
parameter tensor, e.g. Ref. [8, 9].
We present a non-local continuum description of nematic LCEs. Our fundamental variables are the displacement

vector of cross-links and the orientational order parameter tensor. Since gradient expansions of the free energy can
lead to ill-posedness of the problem of its minimization [10], we use a non-local formalism, where the effects of spatial
variations of the displacement and order parameter on the free energy are taken into account via the fully non-local
interactions. We also propose a Rayleigh dissipation function, which is local due to the short range of the dissipative
interactions. Using a Lagrangian approach, we obtain the equations of motion for the material displacement and
the orientational order parameter. Finally, we examine the free energy and the equations of motion in the limit of
long wavelength and small amplitude variations of displacement and orientational order parameter, and compare our
results with those existing in the literature.

I. FREE ENERGY

A. The elastic free energy

The elastic part of the free energy of either an isotropic or a liquid crystal elastomer in a continuum description
can be written in terms of non-local interactions between connected cross-links. In our formalism,

Fel =
1

2

Z
ρoPo(r, r

0)g(r+R, r0 +R0)d3rd3r0 (1)

where ρo is the cross-link density, Po is the probability-density for finding the ends of a polymer chain at r and r
0 in

the undeformed sample, and g is the interaction kernel. R(r) denotes the displacement of a material point from its
original position r in the undistorted sample, and the vector X = r +R is the Eulerian, while r is the Lagrangian
coordinate. The integrals are taken over the sample volume. In an isotropic system, the probability density of finding
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the ends of a polymer chain of length L at r and r0 is given by

Piso(r, r
0) =

µ
3

2πLa

¶3/2
exp

Ã
−
3(rα − r0α)L

−1
oαβ(rβ − r0β)

2La

!
(2)

where a is the persistence- or step length, and L−1o is the dimensionless inverse step-length tensor. Since the system
is isotropic, L−1o is just the identity.
In the anisotropic LCE system, following Warner and Terentjev [3], we take

Po(r, r
0) =

µ
3

2πLa

¶3/2
1

(detLo)1/2
exp

Ã
−
3(rα − r0α)L

−1
oαβ(rβ − r0β)

2La

!
(3)

where Loαβ is the effective dimensionless step length tensor in the undeformed sample, and Lo appears in the denom-
inator as a result of normalization. The interaction kernel is the free energy of a Gaussian coil, given by

g(r+R, r0 +R0) = −kT lnP (r+R, r0 +R0) (4)

where k is Boltzmann’s constant, T is the temperature and P (r, r0) is the probability density for the coil-ends, given
by

P (r, r0) =

µ
3

2πLa

¶3/2
1

(detL)1/2
exp

Ã
−
3(rα − r0α)L

−1
αβ(rβ − r0β)

2La

!
(5)

where Lαβ is the effective dimensionless step length tensor in the deformed sample. In general, Lαβ depends on the
degree of orientational order, and hence on the order parameter tensor. The free energy then takes the form

F c
el =

1

2
kT

Z
ρoPo(r, r

0)×

×
∙
3

2La (r
0
α +R0α − rα −Rα)L

−1
αβ(r

0
β +R0β − rβ −Rβ) +

1

2
ln detL

¸
d3rd3r0 (6)

omitting an additive constant. By writing the free energy as F =
R
F d3r, we have, explicitly for the elastic free energy

density,

Fc
el (r) =

1

2
kTρo

µ
3

2πLa

¶3/2 Z
1

(detLo)1/2
exp

Ã
−
3(rα − r0α)L

−1
oαβ(rβ − r0β)

2La

!
×∙

3

2La (r
0
α +R0α − rα −Rα)L

−1
αβ(r

0
β +R0β − rβ −Rβ) +

1

2
ln detL

¸
d3r0 (7)

1. Compressibility

The expression for the elastic free energy above describes the entropic contributions associated with changing the
distance between the end points of polymer chains. It does not describe Van derWaals or steric interactions responsible
for the condensed phase of the system and for determining bulk compressibility. Experimentally, it is found that most
rubbers and liquid crystal elastomers are nearly volume conserving. Rather than constructing a more detailed free
energy, capable of producing an equation of state for the system, we therefore propose two approaches for enforcing
volume conservation. Volume conservation requires that, to lowest order,

∂Rα

∂rα
= 0 (8)

The first approach to enforce this is include in the free energy density the term

1

2
B(∂Rα

∂rα
)2 (9)

which penalizes volume change. The quantity B corresponds to the bulk modulus and approaches infinity in the limit
that the elastomer becomes incompressible. Alternately, one may include a potential energy density function P (R)
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in the free energy which is determined by the requirement that Eq. (8) remain satisfied. P may be regarded as an
internal pressure. Both approaches accomplish the desired result, here we choose the first, and write for the elastic
contribution to the free energy density

Fel (r) =
1

2
kTρo

µ
3

2πLa

¶3/2 Z
{ 1

(detLo)1/2
exp

Ã
−
3(rα − r0α)L

−1
oαβ(rβ − r0β)

2La

!
×∙

3

2La(r
0
α +R0α − rα −Rα)L

−1
αβ(r

0
β +R0β − rβ −Rβ) + ln detL

¸
+
1

2
B(∂Rα

∂rα
)2}d3r0 (10)

B. The nematic free energy

The free energy associated with liquid crystalline order of the mesogenic constituents of the elastomer can be
written in terms of the non-local dispersion interactions using an inhomogeneous mean field approach. We assume
the mesogens are effectively cylindrically symmetric, with the symmetry axis along the unit vector l̂. The orientation
of the mesogen is specified by the symmetric, traceless tensor

σαβ ≡
1

2
(3lαlβ − δαβ) (11)

where lα is the αth cartesian component of l̂ and δαβ the Kroenecker delta. This description occurs naturally when
considering anisotropic dispersion forces [11] and retains the inversion symmetry of the nematic phase [12]. The
orientational order parameter Qαβ is

Qαβ ≡ hσαβi (12)

where the square brackets h..i denote ensemble average. Qαβ is real, symmetric and traceless; it can be written as

Q =− 1
2
(S − P )L̂L̂− 1

2
(S + P )M̂M̂+SN̂N̂ (13)

where the eigenvector N̂ associated with the largest eigenvalue S is the nematic director;

S =<
1

2
(3(̂l · N̂)2 − 1) > (14)

and

P =<
3

2
((̂l · L̂)2 − (̂l · M̂)2) > (15)

are the uniaxial and biaxial scalar order parameters. To retain conventional notation, we write the nematic director
N̂ = n̂. The biaxial order parameter P can be significant in strongly deformed systems.
The interaction energy of two mesogens located at X = r+R and X0 = r0 + R0 due to London-Van der Waals

dispersion interactions is of the form

E12 = −C
Jαβγδ (X−X0) (δαβ + αaσαβ(X))(δγδ + αaσγδ(X

0))

|X−X0|6 (16)

where C is the interaction strength, and αa is the relative polarizability anisotropy of the mesogen, given by

αa =
2
¡
αk − α⊥

¢¡
2α⊥ + αk

¢ (17)

where αk and α⊥ are the polarizabilities parallel and perpendicular to l̂. The directional coupling tensor Jαβγρ is

Jαβγδ(X−X0) ≡ (3ZαZγ
Z2

− δαγ)(3
ZβZδ
Z2

− δβδ) (18)
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where Zα is a component of the vector Z = X0 −X. In the mean field approximation, at constant mesogen density
ρm, the single particle pseudopotential for a particle with orientation σαβ in the bulk becomes [11]

E (X, σαβ) = −ρmUo(X)

−ρmσαβ (X)Uαβ(X)−
3

2
ρmαaC

Z
|X−X0|>d

(Qαβ (X
0)−Qαβ (X))ZαZβ¯̄
X−X0 ¯̄8 d3X0

−ρm (σαβ (X)−
1

2
Qαβ (X))Qγδ (X)Uαβγδ(X)

−1
2
ρmα

2
aCQαβ (X)

Z
|X−X0|>d

Jαβγδ

³
Ẑ
´ (Qγδ (X

0)−Qγδ (X))¯̄
X−X0 ¯̄6 d3X0 (19)

where d = d (Q (X) ,Q (X0)) is the distance of closest approach, and

Uo(X) ≡ 3C
Z
|X−X0|>d

1¯̄
X−X0 ¯̄6 d3X0 (20)

Uαβ(X) ≡ 3αaC
Z
|X−X0|>d

ZαZβ¯̄
X−X0¯̄8 d3X0

Uαβγδ(X) ≡ α2aC

Z
|X−X0|>d

Jαβγδ

³
Ẑ
´

¯̄
X−X0¯̄6 d2X0. (21)

The distance of closest approach d for anisometric mesogens is a function of the relative orientation, and hence, on
the average, a function of the the nematic order parameter Qαβ . It is well known that that these steric interactions
are required for the correct description of the nematic phase, including its deformations [13][14]. The nematic free
energy density at X is given, to within an additive constant, by

Fnem (X) = −ρmkT ln
Z
exp

µ
−E (X,σαβ)

kT

¶
d2̂l (22)

For continuous deformations, X is a single valued function of r, and the free energy density can be expressed in
terms of Lagrangian coordinates. Assuming incompressibility,

R
F(r)d3r =

R
F(X)d3X, and the nematic free energy

density is given, explicitly, by

Fnem (r) = ρmE1 (r)− ρmkT ln

Z
exp

µ
−E2 (r,σαβ)

kT

¶
d2̂l+ρmEnon-local (r) (23)

where the single particle pseudopotential, as function of Lagrangian coordinates, is E(r, σαβ) = E1(r) + E2(r, σαβ) +
Enon-local(r) and

E1 (r) ≡ −ρmUo (r) +
1

2
ρmUαβγδ (r)Qαβ (r))Qγδ (r) (24)

E2 (r,σαβ) ≡ −ρmσαβ (r)Uαβ − ρmUαβγδ (r)σαβ (r)Qγδ (r) (25)

Enon-local (r) ≡ −
3

2
ρmαaC

Z
|Z|>d

(Qαβ (r
0)−Qαβ (r))ZαZβ

|Z (r, r0)|8
d3r0

−1
2
ρmα

2
aC

Z
|Z|>d

Jαβγδ

³
Ẑ
´ Qαβ (r) (Qγδ (r

0)−Qγδ (r))

|Z (r, r0)|6
d3r0 (26)

where Z (r, r0) = X0 −X = r0 +R0 (r)− r−R (r0) as before.
For simplicity, it may be assumed that the dependence of the distance of closest approach d does not depend on

nematic order. In this case, the nematic free energy density simplifies to give

Fnem (r) =
1

2
ρ2mUQ

2
αβ(r)− ρmkT ln

Z
exp

µ
ρmU

kT
σαβ (r)Qαβ(r)

¶
d2 l̂

+
1

2
ρmU

Z
|Z|>d

Jαβγδ

³
Ẑ
´ Qαβ(r) (Qγδ(r)−Qγδ(r

0))

|Z (r, r0) |6 d3r0 (27)
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where

U =
4π

5

α2aC

d3
(28)

and we have neglected the constant term

−ρ2mUo = −ρ2m
4πC

d3
(29)

The first two terms in Eq. (27) constitute the tensor version of the local Maier-Saupe free energy, while the non-local
third term describes the free energy cost of inhomogeneities in the order parameter field [11]. The two contributions,
Eqs. (10) and (23) or (27), give

F (r)= F el (r)+Fnem (r) (30)

the total free energy density for the elastomer.

II. EQUATIONS OF MOTION

The dynamical equations can be obtained from the generalized Lagrange’s equations. Two scalar functions must
be specified, the Lagrangian

L =
Z
(Ekin − F)d3r (31)

where Ekin is the kinetic energy density, and F = Fel +Fnem is the free energy density, and the Rayleigh dissipation
function R. We ignore contributions from the nematic order parameter to the kinetic energy, and so have

Ekin(r) =
1

2
ρṘ2(r) (32)

where ρ is the mass density.
We write the local Rayleigh dissipation density function as an expansion in terms of Q̇αβ and the velocity gradient,
∇eαṘβ , and have, to lowest order,

R = T Ṡ = 1

2
ν
(2)
αβγδQ̇αβQ̇γδ + ν

(3)
αβγδ(∇

e
βṘα)Q̇γδ +

1

2
ν
(4)
αβγδ(∇

e
βṘα)(∇eδṘγ) (33)

where the spatial derivatives are with respect to Eulerian coordinates. We assume that terms that depend on the
gradient of the order parameter tensor, ∇eκQ̇αβ , are small compared to the other terms present, and are ignored.
The viscous coefficients ναβγδ are constructed from δij and Q0ij with the appropriate symmetry. As is usually done
in nematodynamics, we choose these coefficients with the same tensorial structure as the free energy density. The
equations of motion are obtained by solvingZ ∙

d

dt

∂Ekin
∂Ṙκ

+
δF
δRκ

+
δR
δṘκ

¸
d3r = 0 (34)

or, on integrating the last term by parts,Z "
d

dt

∂Ekin
∂Ṙκ

+
δF
δRκ

−∇eγ
∂R

∂∇eγṘκ

#
d3r = 0 (35)

and Z "
δF
δQαβ

+
δR
δQ̇αβ

#
d3r = 0 (36)

Evaluating derivatives gives the equations of motion for the material points

ρR̈α = −
δF
δRα

+ ν
(3)
αβγδ∇

e
βQ̇γδ + ν

(4)
αβγδ(∇

e
β∇e

δṘγ) (37)

and for the nematic order parameter

ν
(2)
αβσξQ̇σξ = −

δF
δQαβ

− ν
(3)
σξαβ(∇

e
ξṘσ) (38)

The equations of motion Eq. (37) and (38), together with the free energy densities Eqs. (10) and (23) or (27) are
our main results. They form the basis for our subsequent studies of deformations in nematic elastomers.
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III. SMALL AMPLITUDE - LONG WAVELENGTH APPROXIMATION

A. Free energy

1. The elastic free energy

The free energy in our model is

F (r)= F el (r)+Fnem (r) (39)

where Fel (r) and Fnem (r) are given by Eqs. (10) and (23) in terms of the length tensor Lαβ(Q) and the distance
of closest approach d (Q (X) ,Q (X0)). This is the free energy density in its most general, non-local form. We now
consider approximations to this free energy density to examine its behavior and to make contact with existing results
in the literature.
First, we assume that the nematic order parameter Qαβ in the deformed system differs only slightly from the order

parameter Q0αβ in the undeformed system, and write

Qαβ (r) = Q0αβ (r) +∆αβ (r) (40)

where ∆αβ is small compared to unity. We shall refer to ∆αβ as the displacement of the order parameter from its
value Q0αβ (r) in the undeformed system. Second, we assume that the wavelengths of deformations are long compared

to the relevant interaction lengths a and
√
La , and that the integrand can be adequately approximated by a gradient

expansion to second order. The displacement ∆αβ (r
0) of the nematic order parameter at location r0 can then be

expressed in terms of its value at r

∆αβ(r
0) = ∆αβ(r) +∆αβ,γ(r)zγ +

1

2
∆αβ,γρ (r) zγzρ + ..., (41)

where zα ≡ r0α − rα is the distance in Lagrangian coordinates, and the comma denotes differentiation so that fα,β ≡
∂fα/∂xβ. The displacement R0 (r0) can be similarly expanded in terms of its value at r to give

R0α(r
0) = Rα(r) +Rα,γ(r)zγ +

1

2
Rα,γρ(r)zγzρ + ... . (42)

We expand the free energy density to second order in ∆ and R, with the highest order terms ∆2,R2 and R∆,
respectively and permit at most two gradients in the expression. It is straightforward to carry out the expansion. We
define εαβ ≡ Rα,β , Qαβ ≡ 1

2 (Qαβ (r) +Qαβ (r
0)), assume that Lαβ = Lαβ

¡
Q
¢
and take Qoαβ to be spatially uniform.

The elastic part of the free energy density is then given by

Fel (r) =
1

2
µ
(2,el)
αβγρ∆αβ (r)∆γρ (r) + µ

(3)
αβγρεαβ∆γρ +

1

2
µ
(4)
αβγρεαβεγρ +

1

2
K(el)αβκγρτ∆αβ,κ∆γρ,τ (43)

where the coefficients are

µ
(2,el)
αβγρ = µ

⎛⎝ 3

2La
∂2L−1σξ

∂Q̄αβ∂Q̄γρ

¯̄̄̄
¯
Q̄=Q0

hzσzξi+
1

2

∂2 ln detL

∂Q̄αβ∂Q̄γρ

¯̄̄̄
Q̄=Q0

⎞⎠ (44)

µ
(3)
αβγρ = µ

Ã
3

La
∂L−1ασ
∂Q̄γρ

¯̄̄̄
Q̄=Q0

hzσzβi
!

(45)

µ
(4)
αβγρ = µ

µ
3

LaL
−1
oαγhzβzρi

¶
(46)

and

K(el)αβκγρτ = −
µ

4

⎛⎝ 3

La
1

2

∂2L−1σξ
∂Q̄αβ∂Q̄γρ

¯̄̄̄
¯
Q̄=Q0

hzσzξzκzτ i+
1

2

∂2 ln detL

∂Q̄αβ∂Q̄γρ

¯̄̄̄
Q̄=Q0

hzκzτ i

⎞⎠ (47)
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where

hzα...zβi ≡
Z

Po(z)zα...zβd
3z (48)

and

µ ≡ 1
2
kTρo

µ
3

2πLa

¶3/2
(49)

We have omitted an additive constant, and have ignored surface terms that arise in transforming second gradient to
squared first gradients terms, such as −Kαβγλµν∆αβ∆γλ,µν = Kαβγλµν∆αβ,ν∆γλ,ν+ surface term. Incompressibility
requires that εαα ≡ 0. It is straightforward to show that, sufficiently far from any surface,

hzαzβi =
1

3
LoαβLa (50)

Next, we assume a simple dependence of the step length tensor on the nematic order parameter

Lαβ = δαβ + bQαβ (51)

where b is the dimensionless step-length anisotropy. L−1 and detL can be evaluated at once using the Cayley-
Hamilton theorem which gives

L−1 =
L2 − LtrL+1

2

³
(trL)2 − tr

¡
L2
¢´
I

−12tr (L2) trL+
1
3tr (L

3) + 1
6 (trL)

3 (52)

and

detL =
1

3
tr
¡
L3
¢
+
1

6
(tr L)3 − 1

2
tr
¡
L2
¢
trL (53)

where trL ≡ Lαα is the trace of L and I is the identity.
The term µ

(4)
αβγρεαβεγρ has the expected form of the elastic energy of an anisotropic solid; in our model, the

anisotropy arises through the nematic order parameter Q0 of the undeformed sample. The coefficient K(el)αβκγρτ has
a complex structure, but if it is evaluated for the case of vanishing order parameter in the undeformed sample with
Qo = 0, the simpler form

1

2
K(el)αβκγρτ∆αβ,κ∆γρ,τ =

1

2
C1∆αβ,γ∆αβ,γ +

1

2
C2∆αβ,β∆αγ,γ +

1

2
C3∆αβ,γ∆αγ,β (54)

is obtained, with C2 = C3 = 2C1 = − 1
12µLab2. Although it originates in the elastic part of the free energy, the

expression in Eq. (54) has the same form as the phenomenological free energy density of a deformed nematic in the
tensor representation

F (nem)deGennes =
1

2
L1∆αβ,γ∆αβ,γ +

1

2
L02∆αβ,β∆αγ,γ +

1

2
L03∆αβ,γ∆αγ,β (55)

The last two terms differ only by a surface term which does not enter the dynamical equations in the bulk, and we
write

F (nem)deGennes =
1

2
L1∆αβ,γ∆αβ,γ +

1

2
L2∆αβ,β∆αγ,γ (+surface term), (56)

with L2 ≡ L02 + L03. A stability analysis by de Gennes [13], who introduced Eq. (56), shows that a positive definite
free energy density requires

L1 > 0 and L2 > −3L1/2 (57)

but not L2 > 0. However, in Eq. (54) the coefficient C1 is negative; the free energy density would therefore not be
positive definite without the contribution from the nematic part of the free energy density.
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2. The nematic free energy

We expand the nematic part of the free energy density in Eq. (23) similarly, and obtain

Fnem =
1

2
µ
(2,nem)
αβγρ ∆αβ∆γρ +

1

2
K(nem)αβκγρτ∆αβ,κ∆γρ,τ . (58)

Terms containing εαβ are of higher order in wavenumber and do not appear. The coefficients µ
(2,nem)
αβγρ and K(nem)αβκγρτ

are functions of Qo; they can be determined for any particular choice of the distance of closest approach d. For
example, if d does not depend on nematic order, the nematic free energy density is given by Eq. (27), and it follows
that

µ
(2,nem)
αβγρ ∆αβ∆γρ = A∆αβ∆βα (59)

and

K(nem)αβκγρτ∆αβ,κ∆γρ,τ = B

µ
11

14
∆αβ,γ∆αβ,γ −

12

14
∆αβ,β∆αγ,γ

¶
(60)

where A and B are positive constants [11].
The total free energy density for the nematic elastomer, expanded to second order, is

F =
1

2
µ
(2)
αβγρ∆αβ∆γρ + µ

(3)
αβγρεαβ∆γρ +

1

2
µ
(4)
αβγρεαβεγρ

+
1

2
Kαβκγρτ∆αβ,κ∆γρ,τ +

1

2
B(εαα)2 +

1

2
C(∆αα)

2 (61)

where µ(2)αβγρ ≡ µ
(2,el)
αβγρ + µ

(2,nem)
αβγρ and Kαβκγρτ ≡ K(el)αβκγρτ + K

(nem)
αβκγρτ . The quantities B and C may be regarded as

Lagrange multipliers enforcing the constraints of constant volume and traceless nematic order parameter. Conditions
(57) must hold for Eq. (61).
Eq. (61) shows that the presence of the cross-linked elastomer matrix changes the nematic-isotropic transition

temperature and contributes to the elastic constants L1 and L2 of the nematic. A change in the transition temperature
due to contributions from the elastomer has been pointed out in Ref. [15], where only a scalar nematic order parameter
was considered.
In our second order gradient approximation, we have omitted surface terms. It is well known that surface terms

that arise from transforming second gradient terms to squared first gradient terms can lead to a free energy that
is unbounded from below, and to an ill-posed minimization problem [10], This can be avoided by using the fully
non-local free energy to obtain the dynamical equations, and only then perform the gradient expansion [11].
A result similar to Eq. (54) is obtained when the scalar order parameter S is assumed to be constant, as in Ref. [16].

3. Limiting cases

If the reference state is isotropic, on enforcing incompressibility, we have for the uniform contribution of the elastic
free energy

Funel =
µ

4
(b∆γρ − 2εSγρ)2, (62)

omitting a surface term. This leads to a soft (spontaneous) deformation when εSγρ =
1
2b∆γρ, where εSγρ is the symmetric

part of the deformation tensor εγρ.
It is straight forward to show that Eq. (43) contains the usual continuum elastic free energy density [3] in terms of

the nematic director. We again take the scalar order parameter S to be constant, and keeping terms in Eq. (43) to
second order in the director displacement δn̂ gives

∆αβ =
3

2
S0(n0αδnβ + nβδnα + δnαδnβ). (63)

We arrive at the usual free energy by considering terms in Eq. (43) to second order in the director displacement, δn̂,
and enforcing ∆αα = 0.
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B. Equations of motion

The general equations of motion are given, in terms of the dissipation and the non-local free energy, in Eqs. (37)
and (38). We now consider approximations to these to examine the behavior of the system and to make contact with
existing results in the literature. As before, we assume that the wavelengths of deformations are long compared to
the relevant interaction lengths a and

√
La , and that the displacement of the order parameter is much smaller than

unity. We also assume here that the displacement R is small compared to r, and we therefore do not distinguish
between gradients in the Euler and Lagrangian coordinates. The equations of motion (37) and (38) become

ρR̈α =
∂

∂xβ

∙
∂F

∂Rα,β
+ ν

(3)
αβγλ∆̇γλ + ν

(4)
αβγλṘγ,λ

¸
(64)

and

ν
(2)
αβγλ∆̇γλ = −

∂F
∂∆αβ

+
∂

∂xγ

∂F
∂∆αβ,γ

− ν
(3)
γλαβṘγ,λ (65)

with F given by Eq. (61). We assume the viscous coefficients ν(k)αβγλ to be proportional to the coupling tensors µ
(k)
αβγλ

in Eq. (61), as is commonly done in nematodynamics. These can be written in terms of S0 and n̂0, the scalar nematic
order parameter and director in the undeformed sample, as shown in the Appendix.

1. Spatially uniform scalar nematic order parameter

For the case of constant scalar nematic order parameter, we write the order parameter displacement as

∆αβ =
3

2
S0(n0αδnβ + n0βδnα + δnαδnβ) (66)

since ∆αα = 0 and nαnα = 1. >From the expressions for the viscosity tensors in the Appendix, obtain the viscous
stress

σ0γρ =
∂R
∂ε̇ργ

= ν1n
0
γn

0
ρ(n

0
αε̇
S
αβn

0
β) + ν2n

0
γNρ + ν3Nγn

0
ρ + ν4ε̇

S
ργ + ν5n

0
γ ε̇
S
ραn

0
α + ν6n

0
αε̇
S
αγn

0
ρ (67)

and viscous director field

g0γ = −
∂R
∂δṅγ

= λ1Nγ + λ2n
0
αε̇
S
αγ (68)

where Nγ ≡
¡
δṅγ − ε̇Aγαn

0
α

¢
, and εSαβ and εAαβ are the symmetric and anti-symmetric parts of εαβ . The viscous stress

is in the Ericksen-Leslie form [17], and the coefficients are given by ν1 = −ν(r− 1)2/r, ν2 = ν(1− r), ν3 = ν(1− r)/r,
ν4 = 2ν, ν5 = ν(r − 1), and ν6 = ν(1− r)/r. The parameter r ≡ lk/l⊥ is a measure of the anisotropy of the polymer
chain. The coefficients obey the Parodi relations, ν2 + ν3 = ν6 − ν5, λ1 = ν2 − ν3 and λ2 = ν5 − ν6. The dissipation
function is positive definite [17] because for ν > 0 the following inequalities are satisfied: ν4 ≥ 0, 2ν4 + ν5 + ν6 ≥ 0,
2ν1 + 3ν4 + 2ν5 + 2ν6 ≥ 0 and −4λ1(2ν4 + ν5 + ν6) ≥ (ν2 + ν3 − λ2)

2.

2. Small Q0

We next consider the case when the nematic order parameter Q0 in the undeformed sample is small, and expand
to second order in Q0 and ∆. The viscosity coefficients become

ν
(2)
αβσξ =

ν

2
(δαξδσβ + δασδβξ) (69)

ν
(3)
αβγρ = −

ν

2
(δαγδβρ + δβγδαρ) + ν(Q0αγδβρ + δβγQ

0
αρ) (70)
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which gives the dynamical equation for the nematic order parameter

∆̇αβ = −
1

ν

∙
∂F
∂∆αβ

−∇κ
∂F

∂∇κ∆αβ

¸
+ ε̇Sαβ + [ε̇

A
αlQ

0
κβ −Q0ακε̇

A
lβ ]− [Q0ακε̇Sκβ + ε̇SακQ

0
κβ] (71)

This is in agreement with the results of Olmsted and Goldbart [18] for pure nematics, except for the last term in Eq.
(71), which they did not explicitly give since they regarded it as a higher order reactive term. This type of term,
and higher order terms in Q0, appears in a nonlinear expansion in their formalism. A similar result in pure nematic
theory is obtained using the Poisson-bracket approach by Stark and Lubensky [19] and by Pleiner et al. [20] in a
polymeric system .

3. Spatially uniform strain

Finally, we consider the case when a uniform strain is applied to the sample, and the nematic tensor order para-
meter is spatially uniform. The equilibrium configuration can be obtained from the stationary solution of Eq.(65) ,
∂F/∂∆αβ = 0, which gives

µ
(2)
αβγρ∆γρ + µ

(3)
γραβεγρ = 0 (72)

where ∆αα = 0. This expression, together with the explicit expressions for the coefficients, shows how the order
parameter tensor responds to applied strain. If the strain is along the initial director direction, a change in the scalar
order parameter results. Strain applied perpendicular to the director leads to biaxiality, but in this small deformation
approximation the director remains constant. Shearing the sample gives rise to off-diagonal terms in order parameter
tensor, implying director rotation.

IV. SUMMARY

In this paper, we propose a non-local continuum model to describe the dynamics of non-uniform deformations in
nematic elastomers in terms of the material displacement vector and the nematic order parameter tensor. We have
derived expressions for the non-local free energy including contributions from both elastic and nematic interactions.
Our formalism for elastic interactions is based on the work of Warner and Terentjev[3]. We have obtained equations
of motion for the material displacement and the order parameter from the free energy and the Rayleigh dissipation
function via a Lagrangian formalism. The equations of motion are expected to be valid in the case of large and
inhomogeneous deformations and strains.
We have examined the behavior in the limit of long-wavelength and small amplitude variations of displacement

and orientational order parameter. In this limit, the predictions of our model are in agreement with existing results
in the literature. To facilitate the comparison, we have carried out a gradient expansion of the free energy density
instead of the dynamical equations in the long-wavelength limit, and ignored surface contributions when converting
second gradient to squared gradient terms. Incorporating these surface terms would lead to an ill-posed minimization
problem[10][11]. The formally correct approach is to first derive the dynamical equations in fully non-local form, as
we have done, and only then take the long-wavelength limit[11]. More detailed work, including numerical simulations,
is currently under way.
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V. APPENDIX

The viscous coefficients ν(k)αβγλ are be proportional to the coupling tensors µ
(k)
αβγλ in Eq. (61). These can be written

in terms of S0 and n̂0, the scalar nematic order parameter and director in the undeformed sample. They become, to
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second order in Qo, assuming Lij = δij + bQo and ignoring terms which do not contribute,

µ
(2,el)
αβγλ = α(2) (δαγδβλ + δαγδβγ) + β(2)

¡
δαγn

0
βn

0
λ + δβγn

0
αn

0
λ + δαλn

0
βn

0
γ + δβλn

0
αn

0
γ

¢
+γ(2)n0αn

0
βn

0
γn

0
λ, (73)

µ
(3)
αβγλ = α(3) (δαγδβλ + δαλδβγ) + β(3)

¡
n0αn

0
γδβλ + n0αn

0
λδβγ

¢
+ γ(3)

¡
δαβ − n0αn

0
β

¢
δγλ (74)

µ
(4)
αβγλ = µ

µ
δαγδβλ +

µ
l⊥
lk
− 1
¶
n0αn

0
γδβλ +

µ
lk
l⊥
− 1
¶
n0βn

0
λδαγ

¶
+µ

µ
l⊥
lk
− 1
¶µ

lk
l⊥
− 1
¶
n0αn

0
βn

0
γn

0
λ (75)

where we define

lk ≡ 1 + bS0 (76)

l⊥ ≡ 1− bS0/2 (77)

and the scalar coefficients in Eqs. (73) and (74) are given by

α(2) ≡ µ

detLo

b2
¡
1 + bS0

¢
4

=
µb2

4

1

l2⊥
(78)

β(2) ≡ − µ

detLo

3

8
b3S0 =

µb2

4

µ
1

l⊥lk
− 1

l2⊥

¶
(79)

γ(2) ≡ µ

detLo

9

8
b2
¡
bS0

¢2
1 + bS0

=
µb2

2

µ
1

l⊥
− 1

lk

¶2
(80)

α(3) ≡ µ

detLo

Ã
− b

2
− b

bS0

4
+ b

¡
bS0

¢2
4

!
= − µb

2l⊥
(81)

β(3) ≡ µ

detLo

3

4
b2S0

µ
1− bS0

2

¶
=

µb

2

µ
1

l⊥
− 1

lk

¶
(82)

The corresponding viscosity tensors are given by replacing µ with ν ≡ cµ in the above equations, where c is a constant.
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