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Abstract

In many physical situations, the eigenvalues and eigenvectors of tensors are of key importance.

Methods for determining eigenvalues and eigenvectors and for implementing eigenvalue decomposi-

tion are well known for tensors of second rank. There are many physical situations, however, where

knowledge of the eigenvalues and eigenvectors of tensors of higher rank tensors would be useful. We

propose a procedure here for determining the eigenvalues and eigenvectors and for implementing

eigenvalue decomposition of tensors of arbitrary rank.
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I. INTRODUCTION

Physical quantities are tensors. Multiway arrays, closely related to tensors [1] are also of

importance in image and signal processing [2]. In many physical situations, it is useful to

express tensors in terms of their eigenvalues and eigenvectors. For example, in crystal optics,

the refractive indices of optical eigenmodes are equal to the square roots of the eigenvalues

of the dielectric tensor, and the associated eigenvectors define the polarization states [3]. In

liquid crystal physics, the free energy of spatially homogeneous nematics is a function of the

eigenvalues of the orientational order parameter tensor [4]; if the system is not homogeneous,

the eigenvectors and their derivatives also appear. For nematic liquid crystals consisting of

rod-like molecules, the relevant order parameter is 〈lαlβ〉, a second rank tensor, where lα is

a component of a unit vector along a rod and 〈·〉 denotes the ensemble average. The three

eigenvalues of the tensor characterize the three phases: isotropic, and uniaxial and biaxial

nematic.

The eigenvalues are independent scalars which are invariant under rotations of the coordi-

nate system. The free energy of a system with a tensor order parameter can be conveniently

represented as function of the eigenvalues of the tensor. The eigenvalues may be regarded

as scalar order parameters, giving a measure of different types of order. The eigenvalues of

tensors thus play a crucial role in statistical descriptions of condensed matter systems.

Methods for determining eigenvalues and eigenvectors and for implementing eigenvalue

decomposition are well known for second rank tensors [5]. There are many physical situ-

ations, however, where knowledge of eigenvalues and eigenvectors and eigenvalue decom-

position of higher rank tensors would be useful. Examples are elasticity, where the elastic

modulus is a fourth rank tensor, and liquid crystals, where the orientational order param-

eter of particles with higher symmetry have higher rank order parameters. For example,

the order parameter for tetrahedral particles is a third rank tensor [6],[7],[8],[9], which may

be written as 〈lαlβlγ〉. Although tensor decomposition is an active area of research today

[1],[10], to our knowledge, a direct generalization of the process of finding eigenvalues and

eigenvectors and of eigenvalue decomposition for tensors of rank greater than two does not

exist.

We propose such a generalization here, and provide a procedure for determining the

eigenvalues and eigenvectors, implementing eigenvalue decomposition of tensors of arbitrary
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rank.

II. BACKGROUND

Our proposed approach parallels the standard solution of the eigenvalue problem and

standard eigenvalue decomposition tensors. We use the following notation. The rank r of

a tensor refers to the number of its indices [11]. The dimension D refers to the number of

values each index is allowed to take; in our notation, the indices take on values 1, 2, ..., D.

We take the dimension to be the same for all indices. We use the Einstein summation

convention, where summation is implied over repeated Greek indices. For a second rank

tensor Aαβ which can be represented as a matrix, we use the convention that the first index

refers to the row, and the second to the column.

The standard eigenvalue problem, often written as

Ax =λx (1)

is, in indicial notation,

Aαβxr
β = λxr

α. (2)

Here Aαβ is a given second rank tensor, the scalar λ is an eigenvalue and the vector xr
α is a

right eigenvector, both to be determined. The standard solution is obtained [12] by writing

Eq. (2) as

(Aαβ − λδαβ)xr
β = 0, (3)

where δαβ is the Kronecker delta, and noting that for a nontrivial solution to exist, the

determinant must vanish. That is,

|Aαβ − λδαβ| = 0. (4)

This gives the secular equation, a polynomial of order D in λ, set equal to zero, whose roots

are the eigenvalues λi. The number of eigenvalues is equal to the dimension D. Once the

eigenvalues are known, for each eigenvalue λi, Eq. (2) may be solved for the corresponding

right eigenvector xr
iα.

One can also write the same eigenvalue problem in terms of the left eigenvector; that is

xl
αAαβ = λxl

β. (5)
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We note here that the order of writing the symbols xl
α and Aαβ is immaterial; the superscripts

l and r refer to the index of Aαβ over which summation takes place. Proceeding as before,

the secular equation is again

|Aαβ − λδαβ| = 0, (6)

and so the set of eigenvalues for left and right eigenvectors are the same. By multiplying

both sides of Eq. (2) by xl
α, we see that xr

iαxl
jα = 0 if i 6= j, that is, left and right eigenvectors

belonging to different eigenvalues are orthogonal. Since the magnitudes of the eigenvectors

are undetermined, they may be conveniently normalized as shown below:

x̂r
iα =

xr
iα√

xr
iνx

l
iν

(7)

and

x̂l
iα =

xl
iα√

xr
iνx

l
iν

. (8)

It follows that

x̂l
iαx̂r

iα = 1. (9)

If the eigenvalues are all different, A can be diagonalized. It is useful to define Xr, the

tensor of normalized right eigenvectors, with elements x̂r
iα. Xr is defined as

Xr
αβ = x̂r

iα, (10)

where

β = i, (11)

so the second index β of Xr, the row number, is equal to the eigenvalue number i. If D = 3,

then

Xr =




x̂r
11 x̂r

21 x̂r
31

x̂r
12 x̂r

22 x̂r
32

x̂r
13 x̂r

23 x̂r
33


 . (12)

Similarly, we define Xl, the tensor of normalized left eigenvectors, with elements x̂l
iβ. Xl is

defined as

X l
αβ = x̂l

iα, (13)

where

i = β. (14)
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Here also the second index β of Xl is equal to the eigenvalue number i. If D = 3, Xl is

Xl =




x̂l
11 x̂l

21 x̂l
31

x̂l
12 x̂l

22 x̂l
32

x̂l
13 x̂l

23 x̂l
33


 . (15)

If all the eigenvalues are all different, then, from normalization and orthogonality of the left

and right eigenvectors, it follows that

Xr
γαX l

γβ = δαβ. (16)

Similarly, if the eigenvalues are all different, then

Xr
γαX l

δα = δγδ. (17)

Writing Eq. (2) in terms of the normalized right eigenvectors

Aαβx̂r
iβ = x̂r

iαλi. (18)

It follows that

AαβXr
βγ = Xr

ανΛνγ, (19)

where

Λij = λiδij. (20)

If D = 3, Λ is

Λ =




λ1 0 0

0 λ2 0

0 0 λ3


 . (21)

Multiplying Eq. (19) through by X l
αδ gives

X l
αδAαβXr

βγ = X l
αδX

r
ανΛνγ (22)

and

X l
αδAαβXr

βγ = Λδγ . (23)

This shows that A can be diagonalized.

Multiplying Eq. (19) through by X l
δγ gives

AαβXr
βγX

l
δγ = Xr

ανΛνγX
l
δγ (24)
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and

Aαδ = Xr
ανΛνγX

l
δγ. (25)

It follows that Aαβ may be written in terms of its eigenvalues and right and left eigenvectors

as

Aαβ =
∑

i

λix̂
r
iαx̂l

iβ. (26)

The validity of Eq. (26) can be seen at once by noting that if all the eigenvalues are dif-

ferent, then the eigenvectors form a basis, and so any vector may be expressed in terms of

these. Taking the inner product of both sides with vectors which select one element of Aαβ

demonstrates the equality element by element.

Eq. (26) is the eigenvalue decomposition of the tensor Aαβ. We note that since the

eigenvectors are orthogonal, we have

AαβAβα =
∑

i

λ2
i . (27)

We now generalize this approach to tensors of rank different from two.

III. EIGENVALUES AND EIGENTENSORS OF TENSORS OF EVEN RANK

The proposed schemes for solving the eigenvalue problem for tensors of odd and even rank

differ somewhat; dealing with tensors of even rank is more straightforward. We therefore

first consider tensors of even rank. Specifically, we begin by considering the standard form

of the eigenvalue problem Ax =λx in the case when A is a tensor of rank r = 4. In this

case, there are two ways of interpreting the eigenvalues and eigenvectors. If x is taken to

be a vector, then each eigenvalue λ must be second rank tensor, each, in general, with D2

elements. Alternately, if x is taken to be a second rank tensor, then the eigenvalues λ are

simple scalars. For simplicity, conciseness and keeping a close correspondence with the usual

problem for second rank tensors, we adopt the second choice.

In indicial notation, the eigenvalue problem then becomes

Aαβγδx
r
γδ = λxr

αβ, (28)

where λ is a scalar eigenvalue and xr
αβ is the right ‘eigentensor’ of Aαβγδ. This can be

rearranged to read

(Aαβγδ − λδαγδβδ)x
r
γδ = 0. (29)
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This is a system of D2 linear equations in D2 unknowns; for a nontrivial solution to exist,

the determinant must vanish.

It is useful at this point to note that the scalar (inner) product of two tensors, say Bαβ

and Cγδ, is just the scalar (inner) product of the vectors obtained by ‘unfolding’ the tensors.

If D = 3, we can define, using the elements of the tensors Bαβ and Cγδ, the vectors

B̃ = (B11, B12, B13,B21, B22, B23, B31, B32, B33) (30)

and

C̃ = (C11, C12, C13, C21, C22, C23, C31, C32, C33). (31)

Then

BαβCαβ = B̃ · C̃. (32)

More formally, the unfolding corresponds to replacing the pair of indices αβ by a single

index θ, whose value is given by

θ = (α− 1)D1 + (β − 1)D0 + 1, (33)

which here can take on the values 1, 2, ... 9. Then

B̃θ = Bαβ (34)

and we can write

BαβCαβ = B̃ · C̃ =B̃θC̃θ. (35)

Re-labeling Eq. (33) gives

φ = (γ − 1)D1 + (δ − 1)D0 + 1, (36)

which also takes on the values 1, 2, ... 9. Using this notation, we can unfold the second rank

tensor xαβ and define the vectors

x̃l
θ = xl

αβ (37)

and

x̃r
φ = xr

γδ, (38)

and unfold the fourth rank tensor Aαβγδ to define the second rank tensor

Ãθφ = Aαβγδ. (39)
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In terms of the unfolded quantities, Eq. (28) becomes

Ãθφx̃
r
φ = λx̃r

θ, (40)

which is just the usual standard eigenvalue problem; it can be solved exactly as Eq. (2).

Since Eq. (40) is the same as Eq. (28), the eigenvalues of Aαβγδ in Eq. (28) are the same as

those of Ãθφ. The secular equation is

|Ãθφ − λδθφ| = 0, (41)

here Ãθφ is a 9× 9 matrix, therefore there are 9 eigenvalues. Once the eigenvalues are deter-

mined, the eigenvectors x̃r
i corresponding to λi can be obtained from Eq. (40), and x̃l

i can

be obtained similarly. Again, left and right eigenvectors belonging to different eigenvalues

are orthogonal. The eigentensors of Eq. (28) are given by

xl
iαβ = x̃l

iθ (42)

and

xr
iγδ = x̃r

iφ. (43)

The eigentensors can be normalized, as before, so that

x̂r
iγδx̂

l
iγδ = 1. (44)

If all the eigenvalues are different, Ãθφ can be written in terms of its eigentensor decom-

position as

Ãθφ =
∑

i

λi

x̃r
iθx̃

l
iφ

x̃r
iψx̃l

iψ

. (45)

Equivalently, one can write the eigenvalue expansion for Aαβγδ,

Aαβγδ =
∑

i

λix̂
r
iαβx̂l

iγδ, (46)

whose validity is guaranteed by Eq. (45).

If the eigenvalues are all different, A can be diagonalized. It is useful to define Xr, the

fourth rank tensor of normalized right eigentensors, with elements x̂r
iαβ. Xr is defined as

Xr
αβγδ = x̂r

iαβ, (47)
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where

i = (γ − 1)D1 + (δ − 1)D0 + 1, (48)

so the second pair of indices γδ of Xr correspond to the eigenvalue number i. Similarly, we

define Xl, the tensor of normalized left eigentensors, with elements x̂l
iδβ. Xl is defined as

X l
αβγδ = x̂l

iαβ, (49)

where again

i = (γ − 1)D1 + (δ − 1)D0 + 1, (50)

so the second pair of indices γδ of Xl correspond to the eigenvalue number i.

If the eigenvalues are all different, then, from normalization and orthogonality of the left

and right eigentensors, it follows that

Xr
αβγδX

l
αβµν = δγµδδν (51)

and

Xr
αβγδX

l
µνγδ = δαµδβν . (52)

Writing Eq. (28) in terms of the normalized right eigentensors

Aαβστx
r
iστ = xr

iαβλi. (53)

It follows that

AαβστX
r
στµν = Xr

αβγδΛγδµν , (54)

where

Λγδµν = λiδγµδδν (55)

and

i = (γ − 1)D1 + (δ − 1)D0 + 1, (56)

where Λ is the diagonal fourth rank tensor.

Multiplying Eq. (54) through by X l
αβηρ gives

X l
αβηρAαβστX

r
στµν = X l

αβηρX
r
αβγδΛγδµν (57)

and

X l
αβηρAαβστX

r
στµν = Ληρµν . (58)
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This shows that the fourth rank tensor A can be diagonalized.

Multiplying Eq. (54) through by X l
ηρµν gives

AαβστX
r
στµνX

l
ηρµν = Xr

αβγδΛγδµνX
l
ηρµν

and

Aαβηρ = Xr
αβγδΛγδµνX

l
ηρµν .

This can be written as

Aαβηρ =
∑

i

λix̂
r
iαβx̂l

iηρ,

which is the eigenvalue decomposition, as in Eq. (46).

It is straightforward to extend the above approach to tensors of arbitrary even rank. If

the rank of the tensor A is r, then, in the eigenvalue equation Ax =λx, the eigentensor x

will have rank r/2. The rank r/2 tensor x can be expressed as a vector x̃, whose index θ is

given, in terms of the r/2 indices of x, by

θ = (α− 1)Dr/2−1 + (β − 1)Dr/2−2 + ... + (ν − 1)D0 + 1, (59)

where αβ...ν are the r/2 indices of x, and D is the dimension. θ thus takes on values

1, 2, ...Dr/2. The rank r tensor A can then be expressed as a rank 2 tensor Ã, with the

indices θ and φ; φ also takes on values 1, 2, ...Dr/2. The eigenvalue equation can then be

written in the usual standard form of Eq. (40). The eigenvalues of A are the same as those

of Ã. The secular equation is

|Ãθφ − λδθφ| = 0, (60)

here Ãθφ is a Dr/2 × Dr/2 matrix, with Dr/2 eigenvalues λi. Once the eigenvalues are

determined, the eigenvectors x̃r
i corresponding to λi can be obtained from Eq. (40), and x̃l

i

can be obtained similarly. The eigentensors are given by

xr
iαβ...ν = x̃r

iθ (61)

and

xl
iαβ...ν = x̃l

iφ. (62)

In summary, a tensor A of even rank r in dimension D has Dr/2 eigenvalues, given by

|Ãθφ − λδθφ| = 0, (63)
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where Ãθφ is the unfolded representation of A, given by

Ãθφ = Aα′β′...ν′αβ...ν , (64)

where

θ = (α′ − 1)Dr/2−1 + (β′ − 1)Dr/2−2 + ... + (ν ′ − 1)D0 + 1 (65)

and

φ = (α− 1)Dr/2−1 + (β − 1)Dr/2−2 + ... + (ν − 1)D0 + 1. (66)

The left and right eigentensors xl
iα′β′...ν′ and xr

iαβ...ν of Aα′β′...ν′αβ...ν can be obtained from the

left and right eigenvectors x̃l
iθ and x̃r

iφ of Ãθφ, corresponding to the eigenvalue λi, from

xl
iα′β′...ν′ = x̃l

iθ (67)

and

xr
iαβ...ν = x̃r

iφ. (68)

If all the eigenvalues are different, then one can write explicitly

Aα′β′...ν′αβ...ν =
Dr/2∑
i=1

λi

xr
iα′β′...ν′x

l
iαβ...ν

xr
iα′′β′′...ν′′x

l
iα′′β′′...ν′′

, (69)

which is the eigenvalue decomposition. We note here that if the rank r of A is of the form

r = 2n, where n > 2 is an integer, then r/2 is even, and the eigentensors themselves can be

decomposed into their eigenvalues and eigentensors if their eigenvalues are different. This

process can be continued, hierarchically, so long as all the eigenvalues are different, until A

is written in terms of vectors of dimension D.

We note that the eigentensors are orthogonal, and therefore

Aα′β′...ν′αβ...νAαβ...να′β′...ν′ =
Dr/2∑
i=1

λ2
i . (70)

IV. EIGENVALUES AND EIGENTENSORS OF TENSORS OF ODD RANK

We now consider the eigenvalue problem Ax = λx when A is a tensor of odd rank. Since

both sides must have the same rank, if either inner or outer products are used, λ must have

odd rank. If λ is chosen to be a vector of rank r = 1, then x must have rank r = 2. This
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leads to a system of equations which is underdetermined; there are no unique solutions for

either the eigenvalues or the eigentensors. This can be seen at once if A is rank r = 3; then

Aαβγxβγ = λδxδα, (71)

which can be written as

(Aαβγ − λβδαγ)xβγ = 0. (72)

If D = 3, this gives 3 equations in the 9 unknowns in addition to λβ, hence there is no

solvability condition to determine λβ. Choosing λ to have a higher rank does not resolve

this problem, neither does increasing the number of dimensions D. Since there are no

unique solutions for either the eigenvalues or the eigentensors if λ has odd rank, and since

the requirement that λ have odd rank follows directly from A having odd rank and using

inner or outer products, we turn to the remaining option of using the cross product. This

enables the augmentation (or diminution) of the odd rank of tensor A via the Levi-Civita

antisymmetric symbol to obtain a tensor of even rank, which has scalar eigenvalues.

We distinguish two schemes for solving the eigenvalue problem for odd rank tensors using

this approach.

A. First Scheme

In the first scheme, if A is rank r = 3 and D = 3, the rank of A can be augmented by

forming the rank r = 4 tensor

Bαβγδ = Aανγεβνδ, (73)

where εβνδ is the rank r = 3 antisymmetric symbol. If A is a proper tensor, then B is

a pseudotensor. The eigenvalue problem for B can be solved using the method described

above for tensors of even rank. In this case, there will be Dr/2 = 9 eigenvalues. We note

that the diagonal elements of the unfolded tensor B̃ are zero, and B̃ is traceless. It follows

that the 9 eigenvalues are not independent, and

9∑
i=1

λi = 0. (74)

It is interesting to note that if A is antisymmetric in the outermost indices (that is,

Aανγ = −Aγνα), then B̃ is symmetric. This can be seen by considering the transpose of B̃,

B̃φθ = Bγδαβ = As
γναεδνβ = −As

ανγεδνβ = As
ανγεβνδ = Bαβγδ = B̃θφ. (75)
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If A is antisymmetric in the outermost indices and real, then the eigenvalues are real and

the eigenvectors are orthogonal. Conversely, if A is symmetric in the outermost indices, B̃

is antisymmetric. If A is symmetric in the outermost indices and real, then the eigenvalues

are imaginary, and the eigenvectors are orthogonal.

If the eigenvalues and eigentensors of B are λ and xγδ, then

Aανγεβνδxγδ = λxαβ, (76)

which may be understood to be of the form Ax =λx, where the product of A and x consists

of one inner product, and one cross product. If A is a proper tensor, B is a pseudotensor

and the eigenvalues are pseudoscalars. Conversely, if A is a pseudotensor, B is a proper

tensor, and the eigenvalues are proper scalars. Since if the eigenvalues are all different, B

may be expanded in terms of its eigenvalues and eigenvectors to give

Aανγεβνδ =
9∑

i=1

λi

xr
iαβxl

iγδ

xl
iνµx

r
iνµ

, (77)

We note that the eigentensors xr
iαβ and xl

jαβ are orthogonal. Using the identity

εβνδεβηδ = 2δνη, (78)

we obtain

Aαηγ =
1

2

9∑
i=1

λiεβηδ

xr
iαβxl

iγδ

xl
iνµx

r
iνµ

, (79)

the eigenvalue expansion for A, where the products of the eigentensors of the right may be

understood to consist of one outer product and one cross product.

It is interesting to note that although the eigentensors in Eq. (79) are not orthogonal,

and the eigenvalues are not independent, nonetheless

AαηγAγηα = −1

2

9∑
i=1

λ2
i . (80)

B. Second Scheme

The second scheme consists of separating A into symmetric and antisymmetric parts,

and solving the eigenvalue problem and carrying out the eigenvalue expansion for each.

This scheme leads to fewer eigenvalues than the first. If A is rank r = 3 and D = 3, the
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rank of the symmetric part of A can be augmented by forming the rank r = 4 tensor, while

the rank of the antisymmetric part can be diminished by forming a rank r = 2 tensor.

We separate Aαβγ into parts symmetric and antisymmetric in the outermost indices, so

that

Aαβγ = As
αβγ + Aa

αβγ, (81)

where

As
αβγ =

1

2
(Aαβγ + Aγβα) (82)

and

Aa
αβγ =

1

2
(Aαβγ − Aγβα). (83)

1. The Symmetric Part

We augment the symmetric part of A with the Levi-Civita symbol as before, to obtain

the rank 4 tensor

Bαβγδ = As
ανγεβνδ, (84)

which can be unfolded into a rank 2 tensor by transforming the indices as before. That is,

we define again

θ = (α− 1)D1 + (β − 1)D0 + 1, (85)

where D = 3, and

φ = (γ − 1)D1 + (δ − 1)D0 + 1, (86)

giving

B̃θφ = Bαβγδ = As
ανγεβνδ. (87)

The key point here is that if As
ανγ is symmetric in the outermost indices, B̃ is antisymmetric.

Since B̃ is antisymmetric, the resulting 9th order secular equation is an odd function of λ,

hence one eigenvalue is zero, while the rest consist of 4 pairs of positive and negative values.

If As
ανγ is real, the eigenvalues are imaginary. We label these eigenvalues of the symmetric

part of A as λs
0, λs

−1, λs
+1, λs

−2, λs
+2, .....λs

+4, where λs
0 = 0, and λs

−1 = −λs
+1, etc. If all the

eigenvalues are different, the eigenvalue expansion can be written as

As
ανγεβνδ =

4∑
i=1

λs
+i

(
xr

+iαβxl
+iγδ

xl
+iνµx

r
+iνµ

− xr
−iαβxl

−iγδ

xl
−iνµx

r
−iνµ

)
, (88)
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where the eigentensors are the folded eigenvectors of B̃, as before.

Now the eigenvalue equation for the right eigentensor xr
+1 corresponding to λ+1 is

As
ανγεβνδx

r
+1γδ = λs

+1x
r
+1αβ, (89)

while for the left eigentensor xl
+1, it is

As
ανγεβνδx

l
+1αβ = λs

+1x
l
+1γδ. (90)

Re-labeling the indices of Eq. (90) gives

As
γναεδνβxl

+1γδ = λs
+1x

l
+1αβ (91)

and

As
γναεδνβxl

+1γδ = −As
ανγεβνδx

l
+1γδ = λs

+1x
l
+1αβ, (92)

or

As
ανγεβνδx

l
+1γδ = −λs

+1x
l
+1αβ = λs

−1x
l
+1αβ, (93)

and comparison of Eq. (89) and Eq. (93) shows that the left eigentensor associated with λs
+1

equals the right eigentensor associated with λs
−1, and, in general, xl

+i = xr
−i. The eigenvalue

expansion of Eq. (88) can therefore be written as

As
ανγεβνδ =

4∑
i=1

λs
+i

(
xr

+iαβxl
+iγδ − xl

+iαβxr
+iγδ

xl
+iνµx

r
+iνµ

)
, (94)

where the terms in parentheses on the r.h.s. are just the antisymmetric parts of xlxr. The

eigentensors xl
+iγδ and xr

+jγδ are orthogonal. To obtain the eigenvalue expansion of As alone,

we multiply Eq. (94) by εβηδ, and using the identity in Eq. (78), we get

As
αηγ =

1

2

4∑
i=1

λs
+iεβηδ

(
xr

+iαβxl
+iγδ − xl

+iαβxr
+iγδ

xl
+iνµx

r
+iνµ

)
. (95)

Thus the eigenvalue expansion for the odd rank tensor As, symmetric in the outermost

indices, has (D(r+1)/2 − 1)/2 = 4 terms. We note that here also that the eigentensors are

not orthogonal, however,

As
αηγA

s
γηα = −

4∑
i=1

(λs
i )

2. (96)
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2. The Antisymmetric Part

Next, we diminish the antisymmetric part of A,

Aa
αβγ =

1

2
(Aαβγ − Aγβα), (97)

with the Levi-Civita symbol to obtain the second rank tensor

Cβδ = Aa
αβγεδαγ. (98)

The D(r−1)/2 = 3 eigenvalues and corresponding left and right eigenvectors of the second

rank tensor C can be found in the usual way. If the eigenvalues λa and corresponding left and

right eigenvectors xl and xr are known, and all the eigenvalues are different, the eigenvalue

expansion is

Aa
αβγεδαγ =

D(r−1)/2∑
i=1

λa
i

xr
iβxl

iδ

xr
iνx

l
iν

, (99)

where the eigenvectors xr
iβ and xl

jβ are orthogonal. To obtain the eigenvalue expansion of

Aa alone, we multiply Eq. (99) by εδηµ, and using the identity

εδηµεδαγ = δηαδµγ − δηγδµα, (100)

we obtain

Aa
αβγ(δηαδµγ − δηγδµα) = Aa

ηβµ − Aa
µβη =

D(r−1)/2∑
i=1

λa
i εδηµ

xr
iβxl

iδ

xr
iνx

l
iν

. (101)

Since Aa is antisymmetric in the outermost indices, this gives

Aa
ηβµ =

1

2

D(r−1)/2∑
i=1

λa
i εδηµ

xr
iβxl

iδ

xr
iνx

l
iν

, (102)

the eigenvalue expansion of the antisymmetric part of A.

Thus the eigenvalue expansion for the odd rank tensor Aa, antisymmetric in the outermost

indices, has D(r−1)/2 = 3 terms. We note here also that the eigentensors are not orthogonal,

however,

Aa
αηγA

a
γηα − 2Aa

ααγA
a
γββ = −1

2

3∑
i=1

(λa
i )

2. (103)
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V. SUMMARY

The eigenvalues of tensors are independent scalars which are invariant under rotations of

the coordinate system, they are therefore of key importance in a variety of areas. We have

presented a method for finding eigenvalues and eigenvectors and implementing eigenvalue

decomposition for tensors of rank greater than two. Our method, for tensors of even rank,

is a stratightforward generalization of the usual procedure for second rank tensors. Tensors

of odd rank must first be converted to tensors of even rank, and, after computing the

eigenvalues and eigentensors for these, converted back to odd rank again.

A tensor of even rank r in dimension D has Dr/2 eigenvalues; these can be found by

unfolding the tensor to obtain a second rank tensor in Dr/2 dimensions, and solving the

corresponding secular equation. The eigentensors are obtained by folding the Dr/2 cor-

responding eigenvectors. This method works for tensors of arbitrary (even) rank in any

dimension.

For tensors of odd rank r in 3D, there are two distinct schemes. (The eigenvalue problem

of tensors of odd rank in dimensions other than 3 will be considered elsewhere.)

The first involves augmenting the tensor to rank r+1 by contraction with the Levi-Civita

antisymmetric symbol. The eigenvalue problem for the resulting tensor can be solved using

the method proposed for tensors of even rank. This scheme gives D(r+1)/2 eigenvalues, which

are not independent.

In the second scheme, a tensor of odd rank r has (D(r+1)/2− 1)/2 + D(r−1)/2 eigenvalues;

these can be found by separating the tensor into a symmetric and antisymmetric part in the

outermost indices. The symmetric part is augmented to rank r+1, while the antisymmetric

part is diminished to rank r− 1 by contraction with the Levi-Civita antisymmetric symbol.

The eigenvalue problem for the resulting tensors can be solved using the method proposed for

tensors of even rank. Since the number of eigenvalues in the first scheme are not independent

and since their number is greater than that in the second, we prefer the second scheme.

The eigenvalues of proper tensors of odd rank are pseudoscalars, and eigenvalues of pseu-

dotensors of odd rank are proper scalars.

Tensors of odd rank which are symmetric in the outermost indices and which are real, such

as the order parameter tensor of tetrahedral particles, have eigenvalues which are imaginary.

Our proposed scheme enables the determination of the eigenvalues and implementing
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eigenvalue decompositions of order parameter tensors of arbitrary rank, and may be useful

in developing statistical theories of condensed matter systems consisting of particles with

high symmetry.

APPENDIX A: EXAMPLE OF THIRD RANK TENSOR DECOMPOSITION:

Here we demonstrate decomposition of a third rank tensor with randomly chosen elements

according to scheme 2.

We consider the third rank tensor A generated using random integers.

A1αβ =




−8 8 −5

8 −9 −6

10 −8 9


 , A2αβ =




−5 12 −9

−12 4 −11

−8 −10 9


 , A3αβ =




5 −12 −3

8 7 −6

−9 −10 11


 . (A1)

As =




−8 1.5 0 1.5 12 −7.5 0 −7.5 0

8 −10.5 1 −10.5 4 −2 1 −2 −6

10 −8 0 −8 −10 −0.5 0 −0.5 11


 . (A2)

λs
1 = 24.5766i, (A3)




0.1297i 0.0304i −.0510i 0.0304i −.3578i 0.1522i −.0510i 0.1522i −.0597i

−.2862i 0.3080i −.0767i 0.3080i −.2997i 0.0668i −.0767i 0.0668i 0.0039i

−.2493i 0.1637i −.0106i 0.1637i 0.1049i 0.0110i −.0106i 0.0110i −.0437i


 , (A4)

λs
2 = 18.5853i, (A5)




0.2264i −.1282i 0.0686i −.1282i −.1813i 0.1426i 0.0686i 0.1426i −.0370i

−.0412i 0.1591i 0.0323i 0.1591i 0.1607i −.0555i 0.0323i −.0555i 0.0736i

−.1882i 0.1704i −.1139i 0.1704i 0.3548i 0.0463i −.1139i 0.0463i −.0627i


 ,

(A6)

λs
3 = 12.4244i, (A7)
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0.0220i −.0026i −.0026i −.0026i −.0215i 0.0347i −.0026i 0.0347i 0.2106i

−.0139i −.0341i −.0193i −.0341i −.0304i 0.0605i −.0193i 0.0605i 0.2894i

−.0678i 0.0445i 0.1547i 0.0445i 0.0564i −.0937i 0.1547i −.0937i −.7334i


 ,

(A8)

λs
4 = 4.1483i, (A9)




0.0798i 0.0405i 0.0026i 0.0405i 0.1035i 0.1633i 0.0026i 0.1633i −.1114i

−.0063i 0.0959i 0.1263i 0.0959i 0.1825i 0.1537i 0.1263i 0.1537i 0.2268i

0.1124i 0.0619i 0.1098i 0.0619i 0.0305i 0.1284i 0.1098i 0.1284i 0.0848i


 , (A10)

Aa =




0. 6.5 −5. −6.5 0. 4.5 5. −4.5 0.

0. 1.5 −7. −1.5 0. −9. 7. 9. 0.

0. 0. 9. 0. 0. 9.5 −9. −9.5 0.


 , (A11)

λa
1 = 21.6430, (A12)



0. 0.1237 0.0168 −0.1237 0. 0.2099 −0.0168 −0.2099 0.

0. −0.1876 −0.0255 0.1876 0. −0.3181 0.0255 0.3181 0.

0. 0.2646 0.0359 −0.2646 0. 0.4489 −0.0359 −0.4489 0.


 , (A13)

λa
2 = 0.6785 + 9.1197i, (A14)



0. −.0619− .2141i −.0084 + 0.2934i 0.0619 + 0.2141i 0. 0.1451 + 0.0131i 0.0084− .2934i −.1451− .0131i 0.

0. 0.0938− .2978i −.2373 + 0.3359i −.0938 + 0.2978i 0. 0.1591 + 0.1278i 0.2373− .3359i −.1591− .1278i 0.

0. 0.1177 + 0.3228i −.0180− .4521i −.1177− .3228i 0. −.2244− .0049i 0.0180 + 0.4521i 0.2244 + 0.0049i 0.


,

(A15)

λa
3 = 0.6785− 9.1197i, (A16)




0. −.0619 + 0.2141i −.0084− .2934i 0.0619− .2141i 0. 0.1451− .0131i 0.0084 + 0.2934i −.1451 + 0.0131i 0.

0. 0.0938 + 0.2978i −.2373− .3359i −.0938− .2978i 0. 0.1591− .1278i 0.2373 + 0.3359i −.1591 + 0.1278i 0.

0. 0.1177− .3228i −.0180 + 0.4521i −.1177 + 0.3228i 0. −.2244 + 0.0049i 0.0180− .4521i 0.2244− .0049i 0.


.

(A17)
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APPENDIX B: EXAMPLE OF FIRST RANK TENSOR DECOMPOSITION

The procedure proposed above for the decomposition of a third rank tensor must also

work for odd ranks in general, and for a first rank tensor - a vector - in particular.

We therefore consider the problem of decomposing a first rank tensor

A =




a

b

c


 . (B1)

The eigenvalue problem becomes

Aαεαβγxγ = λxβ, (B2)

which can be written as

(Aαεαβγ − λδβγ)xγ = 0, (B3)

and we require that

|Aαεαβγ − λδβγ| = 0, (B4)

and the secular equation becomes

λ3 + λ(a2 + b2 + c2) = 0. (B5)

The eigenvalues are therefore

λ = 0 (B6)

and

λ = ±i
√

a2 + b2 + c2 = ±iA. (B7)

We next determine the eigenvectors associated with these. We must have



0 c −b

−c 0 a

b −a 0







x

y

1


 = λ




x

y

1


 , (B8)

where we have arbitrarily set z = 1. Since the vector is on the right of the matrix, we call

these the right eigenvectors. This gives

x =
ac− λb

c2 + λ2
(B9)
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and

y =
bc + λa

c2 + λ2
. (B10)

The right eigenvector associated with λ = 0 is

xr
0 =




a/c

b/c

1


 , (B11)

that is, the vector A itself.

The right eigenvector associated with λ+ = +i
√

a2 + b2 + c2 can be written as

xr
+ =




ac− ib
√

a2 + b2 + c2

bc + ai
√

a2 + b2 + c2

−(a2 + b2)


 , (B12)

and associated with λ− = −i
√

a2 + b2 + c2, it is

xr
− =




ac + ib
√

a2 + b2 + c2

bc− ai
√

a2 + b2 + c2

−(a2 + b2)


 . (B13)

It is interesting to note that these vectors are complex conjugates, and that they are self-

orthogonal; that is,

xr
+ · xr

+ = xr
− · xr

− = 0. (B14)

but they are not orthogonal with each other,

xr
+ · xr

− = 2(a2 + b2)(a2 + b2 + c2). (B15)

We note that the equation A×B =λB has a non-trivial solution for B if B ·B = 0.

It is also interesting to note that if we write

a = r sin θ cos φ, (B16)

b = r sin θ sin φ, (B17)

and

c = r cos θ, (B18)
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then

xr
+ =




ac− ib
√

a2 + b2 + c2

bc + ai
√

a2 + b2 + c2

−(a2 + b2)


 = r2




sin θ cos θ cos φ− i sin θ sin φ

sin θ cos θ sin φ + i sin θ cos φ

− sin2 θ


 . (B19)

This means that each term is divisible by

r sin θ =
√

a2 + b2. (B20)

We can also look at the left eigenvectors; this are solutions of

[
x y 1

]



0 c −b

−c 0 a

b −a 0


 = λ

[
x y 1

]
. (B21)

These are

x =
ac + λb

c2 + λ2
(B22)

and

y =
bc− λa

c2 + λ2
. (B23)

and so the left eigenvector associated with λ+ = +i
√

a2 + b2 + c2 is

xl
+ =




ac + ib
√

a2 + b2 + c2

bc− ai
√

a2 + b2 + c2

−(a2 + b2)


 , (B24)

and associated with λ− = −i
√

a2 + b2 + c2, it is

xl
− =




ac− ib
√

a2 + b2 + c2

bc + ai
√

a2 + b2 + c2

−(a2 + b2)


 . (B25)

Again, these are self-orthogonal, and their inner product is

xl
+ · xl

− = 2(a2 + b2)(a2 + b2 + c2). (B26)

So we have

xr
+ = xl

− (B27)
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and

xr
− = xl

+. (B28)

It is worth noting that λ+ = −λ−, but λ+ 6= λ∗−, since a, b, c may be complex.

We also note that

xl
+ × xr

+ =




(+i2a
√

a2 + b2 + c2)(a2 + b2)

(+i2b
√

a2 + b2 + c2)(a2 + b2)

(+i2c
√

a2 + b2 + c2)(a2 + b2)


 . (B29)

If we normalize the eigenvectors so that

xl
+ · xr

+ = 1, (B30)

then

A = −λ+(xl
+ × xr

+). (B31)

as expected. We then have the standard form

A =
1

2
{λ+(xl

+ × xr
+) + λ−(xl

− × xr
−) + λ0(x

l
0 × xr

0)} =
1

2
(AÂ+AÂ). (B32)

and our scheme works even for a rank 1 tensor.
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