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Abstract

This paper describes an investigation of mechanical properties of freely suspended
liquid filaments. These unique fluid microstructures may be formed by layered liq-
uid crystalline mesophases. The filaments are electrically deflected and stimulated to
mechanical oscillations. Resonance frequencies and damping rates are recorded. We
introduce a model for a basic description of the dynamics, which is used to evaluate
and to discuss the forces involved. The dependence of the oscillation parameters upon
geometrical parameters and temperature is analyzed.

Thin liquid fibers are among the most fascinating structures in complex fluids. In some
non-Newtonian liquids, fibers can form in rheological processes when such material is pulled
from a reservoir, for example in polymer nematics and columnar phases [1, 2]. Nematic
ordering also plays a role in biological filaments, e.g. [3]. In this study, we investigate
filaments that are not stabilized by dynamic effects but primarily by their internal molecular
layer structure. It is well known that smectic liquid crystals, similar to soap solutions, can
form thin stable free standing films. Few phases of bent-core mesogens, however, are known
to form freely suspended filaments, for example when the material is pulled with a needle
from the bulk. Only few investigations have been devoted so far to the understanding of
structural and mechanical properties of such filaments [6, 5, 7, 4], and little is known about
dynamical properties of such structures. The filaments are excellent models study fluid
dynamics in microsystems.

The filamental structures represent either single cylindrical fibrils or bundles of fibrils,
with diameters from fractions of micrometers to approximately 100 µm, and slenderness
ratios (length to diameter) exceeding 1000. Filaments are pulled with a needle at moderate
speed (< 1 mm/s) from bulk material. They retain uniform diameters during the pulling
process, new material is constantly supplied from the meniscus. When the needle is pushed
slowly back towards the support, the filaments remain straight and excess material flows
back into the bulk. Only after a sudden fast retrace of the needle, the filaments deflect for
a moment before they straighten again, on a millisecond time scale.

The aim of this study is the understanding of the dynamical properties of such liquid
”chords”. For that purpose, we deflect filaments of 10 to 60 µm diameter and 1..5 mm
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length laterally by means of electric fields (Fig. 1, top). After the field is switched off, the
relaxation dynamics of the filaments is investigated. We observe damped oscillations of a
spatially sinusoidal ground mode and analyze the dependence of oscillation parameters upon
filament dimensions and temperature.
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Figure 1: Top: Experimental setup for the preparation of liquid filaments and excita-
tion of oscillations. The observation direction is y, the direction of the electric field
and of the oscillations is z, and x is the vertical axis of the straight filament. The gap
between the electrodes is 6 mm. On the right, images of a straight (0 MV/m) and
a deflected filament (0.5 MV/m) are shown, the filament length is 5.0 mm. Bottom:
Chemical structure of the mesogen

The material studied (Fig. 1, bottom) has a mesomorphism iso 160◦ C SmX 143◦ C
SmCPA 90◦ C solid. The so far not fully classified SmX phase has a layer structure and
many features in common with a B7 phase [8]. X-ray data indicate that the filaments
consist of cylindrically wrapped molecular layers [4], in accordance with proposed B7 filament
structures [5, 6]. However, reflexes related to any in-plane molecular lattice are absent in
SmX.

The experimental setup is sketched in Fig. 1. The filament is drawn vertically between
two holders (positions x = ±L/2). Their distance can be controlled by a stepper motor.
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We assume that the filaments have roughly cylindrical shape with radius r. The setup
is enclosed in a custom-made heating box, described elsewhere [9]. With a homogeneous
DC electric field perpendicular to the filament axis, the chord is ”plucked”, a well defined
bend deformation is induced (Fig. 1, top right), consisting essentially of the ground mode
z(x) = z0 cos(kx) with k = π/L. The deflection amplitude z0 depends on filament length
and diameter and on the electric field strength. The latter is chosen between ≈ 0.1 and 0.5
MV/m, so that z0 is a few percent of the filament length.

We record the filament dynamics at frame rates up to 5/ms with a high speed camera
(Citius Imaging C10), mounted on a QM 100 long range microscope. The deflection z is
measured with a resolution of ≈ 1 µm at the antinode of the oscillations, x = 0.

Figure 2: Deflection of a filament (L = 2.96 mm, r = 25 µm) at 150 ◦C after switching
an electric field of E = 0.33 MV/m on after 0.297 s and off after 3.20 s. The left insert
expands the oscillations immediately after switching on, the solid line guides the eye.
The right insert shows the free oscillation after switching off, the solid curve is a fit
to a damped sine curve, Eq. (1), with parameters given in the plot.

Typical experimental data are presented in Fig. 2. After the DC electric field E is
switched on, the filament bends within µs towards one (spontaneously chosen) electrode.
This deflection is induced primarily by the dielectric torques that tend to rotate a long
cylinder (dielectric constant > 10) with its axis towards the electric field axis. The deflection
stops after reaching a few µm when a balance of electric forces and filament tension is
reached, and a weak, damped oscillation follows (Fig. 2, left insert). Then, the deflected
filament gradually charges in the field (flow of ionic charges of impurities), since the deflected
filament is not on an equipotential line of the electric field. The charged filament is attracted
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by the oppositely charged electrode, and the deflection increases until Coulomb forces acting
on the filament are balanced by its tension. The charging process stops when the electric
field of the accumulated charges compensates the external field in the filament. Then, the
filament is again along an equipotential line of the total field. This saturation is reached
after few seconds. The sign of the charge depends upon the initial spontaneous deflection,
and thus the direction of bend is independent of the DC field polarity. These electric effects
are essentially different from those reported for axial fields [5]. Owing to the cylindrical
symmetry, there is no polar electric response. When the electric field is switched off, the
filament returns with a damped oscillation to its straight ground state (right insert of Fig. 2).
The frequency of this free oscillation was systematically larger, by few percent, than that of
the initial vibration (left insert of Fig. 2). Since the latter may involve electric interactions
additional to mechanical forces, we concentrate here only on the oscillations in the field off
state.
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Figure 3: Dependence of the oscillation frequency ω and the damping coefficient τ−1

on the inverse filament length 1/L at constant filament radius of r = 25 µm, T = 150 ◦C.

The oscillation amplitudes are fitted with a function

z(x = 0) = z0 exp(−t/τ) cos(ωt− φ0) (1)

(see right insert of Fig. 2), the fit parameters ω and τ depend on temperature and filament
dimensions, but neither on the electric field strength used in the preparation nor on the
initial deflection amplitude.

Figure 3 shows one important experimental result, ω depends inversely on the filament
length L, i.e. the phase velocity c = ω/k of transversal waves of the filament is constant.
This representative graph shows data collected from a single filament with uniform radius,
which has been drawn in five steps from 1.4 to 4.9 mm length. This length change tunes the
resonance of the chord approximately from f = 900 Hz to 265 Hz. The relaxation time τ
depends linearly upon L, but 1/τ is more than one order of magnitude smaller than ω.
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Figure 4: Dependence of the phase velocity c(r) = πω(r)/L and the damping constant
τ(r) on the filament radius r. The filament lengths are 2.4 mm ±3%, T = 150 ◦C.
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Figure 5: Dependence of the parameters ω and 1/τ on temperature (filament diameter
22 µm, length 2.5 mm). The solid line is an Arrhenius fit in SmCP.
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Data for the radius dependence of c and τ (Fig. 4) scatter somewhat more than the length
characteristics, because each datum point is obtained from a different filament (altogether
differing in length by < 3 %). The data do not show any systematic variation of ω with
r. The damping time decreases slightly but systematically with smaller filament radius.
For a filament with a diameter of 22 µm and a length of 2.5 mm, we have measured the
temperature dependence of both dynamic parameters. The damping time τ is temperature
independent between 115◦C and 150◦C. In SmCP, ω(T ) can be described by an Arrhenius
curve with activation energy EA = 6.05 kJ/mol. In SmX, the activation energy may be
slightly higher, but the range is too narrow to obtain a reliable quantitative EA there.

These experimental results can be summarized as follows: The angular frequency ω is
proportional to the wave number π/L of the ground mode, any dispersion is below our
detection level. At constant L, ω changes by about 15 % in the accessible temperature
range, oscillations are faster at lower temperatures. There is no systematic ω(r) dependence.
Note that a solid string with tension T and specific mass µ has a ground mode frequency

proportional to
√

T/µ. If, naively, we equate the filament tension to the product of cylinder

circumference and surface tension, 2πrσ, this would lead to an r−1/2 dependence of ω, in
contrast to the experiment. The damping time τ is inversely proportional to the filament
length. Its temperature dependence is negligible. There is a weak radius dependence of τ
(Fig. 4).

For a description of the dynamics, we employ a simple harmonic oscillator model. An
equation of motion of the liquid filaments can be constructed from inertial, elastic, surface
tension and friction terms that influence the dynamics of vibrations in absence of external
forces. As a prerequisite, we recollect possible contributions, including typical solid state
elastic properties that might arise from the internal layer structure. From the surface energy
per length dx of a cylinder with radius r and surface tension σ, dEs = 2πrσd`, one obtains
a force per unit length in z direction fs = 2πrσz′′, primes denote derivatives respective to
x. The kinetic energy per length dx of a filament with mass density ρ, dEi = 1

2
πr2ρ ż2 dx,

yields an inertial force per length fi = πr2ρ z̈.
Orientational elasticity arises from induced deformations of the director field. The mag-

nitude of the related elastic energy per length is of the order of dEor ≈ 1
2
πr2K(z′′)2 dx, where

a single effective elastic constant K is assumed for simplicity. Reasonable values of K are
in the range of pN, and thus the related force term for ≈ −πr2Kz(iv) can be neglected in
comparison to the other forces. Form elasticity may contribute a term dEe = 1

2
E (z′′)2dI,

with the geometrical moment of inertia per length of the cylinder dI and an elastic modulus
E. One arrives at fe = −π

4
r4Ez(iv).

Further, we consider viscous friction of the oscillating filament in air: The filament seg-
ment at the antinode of the deflection moves with a maximum velocity v0 = max(ż). Ex-
perimentally, v0 is of the order of 0.3 m/s or less. Using the kinematic viscosity of air at
100 ◦C, νair ≈ 2.3 · 10−5m2/s, Reynolds number Re and drag coefficient cD for a filament
with r = 25 µm are Re = 2vr/νair ≈ 0.64, cD = 8π/[Re(2.002− ln Re)] ≈ 16, respectively.
The friction force per length is ff = −cD (A/d`) ρairv

2/2, |ff | ≈ 16νairρairv = 16ηairv.
From the measured parameters, one can estimate amplitudes of these forces: f̄s ≈

400 µN/m, f̄i ≈ 1750 µN/m, f̄f ≈ 100 µN/m, f̄e ≈ 30 E/MPa µN/m. This estimation
shows that friction in air should be very small, and form elasticity may become important
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only if the unknown elastic modulus E is of the order of 10 MPa or higher. In addition to
the terms defined above, we allow for some other possible terms in the dynamic equations:
a hypothetical bulk force, fξ = ξπr2z′′, and a bulk friction force connected with shear in the
filament, fν = πr2ρνż′′, with the kinematic viscosity ν. Further, we may have to consider
local energy dissipation at the supports, which is independent of the filament length but may
depend upon the radius r.

We write the equation of motion in the form

z̈ + 2γż − νż′′ − C2z′′ + W 2z(iv) = 0, (2)

related to the above defined parameters by

C2 =
2σ

rρ
+

ξ

ρ
, W 2 =

π

4
r4E + πr2K, (3)

and γ = 8ηair/(πr2ρ). The ansatz z± = z0 exp(±ikx+σt) leads to σ2 +2γσ + νk2σ +C2k2 +
W 2k4 = 0 and one finds σ = −1/τ ± iω with

1

τ
=

8ηair

πr2ρ
+

νk2

2
, ω =

√
C2k2 + W 2k4 − 1

τ 2
. (4)

Boundary conditions are z(±L/2) = 0, and we take into account that in practice only the
ground mode k = π/L is excited (Fig. 1, right). Two counterpropagating waves form the
solution z(x, t) = z0 cos kx cos ωt exp(−t/τ).

We can compare Eq. (4) with the experimental results obtained under isothermal con-
ditions: ω ∝ k and 1/τ ∝ k (Fig. 3). One finds that the W -term (contributions with
z(iv)) is negligible. Both elastic terms, for and fe, are too small to influence the filament
dynamics, otherwise, the experimental dispersion relation ω(k) would be nonlinear. Thus
our interpretation essentially differs from that in [5]. The experimental 1/τ is one order
of magnitude smaller than ω. Hence we can approximate the ω(k) dependence in Eq. (4)
by ω = Ck = (2σ/(rρ) + ξ/ρ)0.5k. Since the surface tension σ ≈ 25 mN/m has been mea-
sured in an independent experiment [4], and a density ρ = 103 kg/m3 may be assumed in

good approximation, the pure surface tension related term
√

2σ/ρr can be calculated. For

a filament with 25 µm radius, it yields 1.4 m/s, which is much too small to explain the
experimental value 2.59 m/s from Fig. 3. Moreover, Fig. 4 shows that ω has no systematic
radius dependence. A dominant surface tension term would lead to ω ∝ √

r.
The experimental filament length dependence of the damping rate yields 1/τ = 0.42 m/s L−1,

i.e. τ grows linearly with L. For L = 1.5 mm, the measured damping rate is 360 ms−1.
Damping by air, in contrast, should be independent of L, and it contributes less than 25 %
to 1/τ in Eq. (4) (for r ≈ 25 µm). A bulk shear friction term would yield an L2 dependence
of τ . In order to explain the linear filament length dependence of τ , one has to look for
alternative dissipative effects (see below).

We have to conclude that the main contribution to the back-driving force is some bulk
term, fξ, that depends on the second spatial derivative of z(x) and is proportional to the
filament volume rather than to its surface. Surface tension related terms in the cylinder model
are too small and yield a wrong ω(r) dependence. ξ should be of the order of ≈ 5 kPa, its
origin has to be explored yet. A static tension measurement reported in [4] seems to give
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in approximation the classical surface energy Es, but systematic measurements need to be
performed. Otherwise, the forces contributing to ξ may be of dynamic origin, comparable
with effects of a non-zero storage modulus of viscoelastic liquids. Measurements of the
dynamic filament tension should clarify this point.

Before the electric field is switched off, z0 is given by the equilibrium of electric (Coulomb)
forces and the leading time-independent term ρC2 z′′ in the equation of motion (2). Initial
acceleration and deflection amplitude are connected by z̈(0, 0) = C2 z′′(0, 0), this allows to
estimate the amplitude of electric forces on the filament, fel = ρ z̈(0, 0) = ρω2 z0, yielding
≈ 600 kN/m3 at E = 0.33 MV/m (resp. charge density 1.8 C/m3).

The damping time τ is proportional to the filament length L, and since at given deflection
z0, the initial kinetic/potential energy of the filament is proportional to L, the main contri-
bution to energy dissipation should be independent of L. A reasonable explanation is that
friction occurs only at the filament ends, where material floats into and out of the meniscus.
Another consequence of τ ∝ L is that inside the filament, there is practically no dissipation.
Weakly damped transversal waves of the filament are accompanied by friction-free plug flow
along the filament axis and viscous friction at the filament menisci. Finally, we note that
the same experiment performed with filaments in the B7 mesophase (of another mesogen)
yields a qualitatively different picture: Instead of oscillations, a fast overdamped relaxation
is observed. This is obviously due to an in-plane positional order of B7, leading to strong
internal dissipation.

This study was supported by the DFG with grant STA 425/15. H. Nádasi and W.
Weissflog are gratefully acknowledged for the supply of mesogenic material.
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