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Abstract 

 
The spectral approach to the Maxwell liquids with arbitrary anisotropy is presented. It is 

based on the spectral decomposition of viscosity and relaxation time tensors. In this way the 

general structure of anisotropic viscoelasticity becomes quite transparent. Special cases of 

viscous and relaxation spectra are considered. They reduce the number of independent 

viscoelastic parameters. The viscoelastic orientation dynamics is also discussed. The symmetry 

and thermodynamic analysis show that the nematic viscoelasticity of Maxwell type is 

characterized by the second-order director equation. This equation gives the correct results in 

viscous and elastic limits. The spectral theory of soft (zero-energy) viscoelastic eigenmodes is 

developed.  They have predicted for complex anisotropic liquids. The present structure-continual 

theory of anisotropic liquids can be applied for analyzing flows of LC polymer systems and 

polymer suspensions with particles of arbitrary shape.   
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I.   Introduction 
 

The rheology of media with microstructure has a long history [1-13]. In addition to the 

classical translation degree, their material points possess internal degrees of freedom. Examples 

of non-classical continua include polymer systems, suspensions and emulsions, composite 

materials, liquid crystals, magnetic and physiological liquids, etc. For polymer media relaxation 

phenomena play a central role [14-16]. The appearance of polymeric liquid crystals inspires the 

investigation of the anisotropic viscoelastic liquids. As the rigorous microscopic theory for 

thermotropic LC polymers is still absent much attention has been paid to various macroscopic 

models [17-27]. Other important materials with anisotropic viscoelastic properties are polymer 

nanocomposites and LC elastomers [28-30]. The anisotropic character of viscoelastic properties 

is a feature of many directed polymer systems. 

The effect of relaxation anisotropy was taken into account in the structure-continual 

theory for anisotropic viscoelastic liquids [18, 31]. Anisotropic relaxation is described by the 

characteristic relaxation time tensor. This theory combines microstructural information with 

continuum representation. The internal structure of liquids is specified by introducing the 

additional continual variables. Thermodynamics fundamental to viscoelastic liquids with 

uniaxial anisotropy was developed by Leonov and Volkov [32]. This approach leads to important 

conclusion that the relaxation anisotropy can be described in a natural way within the framework 

of classical non-equilibrium thermodynamics. It involves the introduction of a tensor internal 

parameter to characterize elastic deformation of the microstructure. The basic problem is to 

determine the general structure of anisotropic viscosity and relaxation time. They are the fourth-

rank tensors.   

Physical properties of media are characterized by mathematical quantities called tensors. 

A non-directional property, such as viscosity of incompressible Newtonian liquid, can be 

specified by a scalar, or zero rank tensor. Tensor properties of higher rank also exist.  The fourth-

rank tensors are commonly used in the anisotropic elasticity and computational mechanics. They 

were introduced for specifications of anisotropic elastic properties of crystals [33]. The 

mathematical treatment of such tensors is difficult. There are various decompositions of fourth-

rank tensors into independent elementary tensors. In the simplest form the general structure of 

fourth-rank tensor is defined by the spectral decomposition into its eigentensors [34]. In many 

physical situations, this decomposition is of key importance. The spectral (algebraic) approach to 

the symmetric anisotropic elasticity was first presented by Thomson (Lord Kelvin) [35, 36]. For 

the generally anisotropic solid, Kelvin has introduced the six principal strains and principal 

elasticities. Pipkin [37] and Rychlewski [38, 39] reconsidered this approach in the context of 
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modern tensor algebra. At present, the spectral approach to the symmetric anisotropic elasticity 

has received increasing attention [40]. However, relatively little has been done for liquids. For 

incompressible uniaxial liquids, the principal viscosities and relaxation times were introduced by 

Volkov and Kulichikhin [18, 41, 42]. 

The aim of this paper is to develop the spectral theory of momentless Maxwell’s liquids 

with arbitrary anisotropy. It is based on the spectral decomposition of the anisotropic viscosity 

and the anisotropic relaxation time. The important special cases of viscous and relaxation spectra 

are considered. We give a spectral interpretation of the soft viscoelastic modes. The present work 

is primarily concerned with constitutive equations. In the last section the viscoelastic orientation 

equation is considered. This theory allows expressing the basic ideas of anisotropic viscoelastic 

material behavior. 

 
II.    Spectral decomposition 
 
 

For viscoelastic media, it is common to decompose the stress tensor into reversible and 

irreversible parts 

    r
ijij ijσ σ σ+= .                                                                (1) 

 

In general, liquids are defined as media with purely isotropic reversible stresses 

 
r
ij ijpσ δ= −  .                                                               (2) 

 

The scalar p  is called the pressure. Thus liquids at rest should only exert normal pressure across 

any plain. Under a rigid body motion (including rest) they cannot sustain any shearing stresses.  

Consider the anisotropic viscoelastic liquids with symmetric stresses. The basic 

constitutive equation for these momentless liquids has the simple form [18]:  

,              

ke
ijijke ijke ke

D e
Dt
στ σ η+ = ,                                                     (3) 

 

where  is the symmetric part of velocity gradient. For specification of 

anisotropic viscoelastic properties, the symmetric viscosity 

i,j j,i(v v ) / 2ije = +

ijkeη  and relaxation time ijkeτ  tensors 

were introduced. This constitutive equation for anisotropic viscoelasticity is an extension of the 

Maxwell relation to anisotropic liquids. 
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 Because the strain rate tensor  and the dynamic stress tensor ije ijσ  are symmetric, there is 

no loss of generality in taking  ijkeη  and ijkeτ  to have internal symmetries 

 

ijke jike ijekη η η= = ,        ijke jike ijekτ τ τ= = .                                     (4) 

 

For simplification, we will assume that these tensors have the major symmetry 

 

ijke keijη η= ,      ijke keijτ τ= .                                                    (5) 

 

The Jaumann time derivative /ijD Dtσ  is commonly used in continual theories for liquid 

crystals.  

The constitutive equation (3) has a thermodynamic foundation [43]. This thermodynamic 

approach to the viscoelasticity is based on the natural generalization of the classical non-

equilibrium thermodynamics developed by Onsager et al. [44] to the systems with memory [45]. 

Equation (3) is the simple case when the thermodynamic force   and flux ije ijσ  are related by the 

anisotropic relaxation equation of the first order. The relaxation thermodynamics provides the 

investigation of viscoelasticity without using the particular stress – “strain” relation for liquids. 

The viscoelasticity can be naturally incorporated into a thermodynamic treatment.  

The spectral analysis of tensors is a simplest mathematical tool to study the general 

structure of the anisotropic viscosity ijkeη  and the anisotropic relaxation time ijkeτ . It is well-

known that the most important things of a tensor are its eigenvalues and eigentensors. By 

Sylvester’s theorem, any symmetric fourth-rank tensor can be decomposed into eigentensors. 

This theorem provides a rapid way to calculate functions of a matrix associated with tensor. For 

the general viscosity and relaxation time tensors, when spectrally decomposed, the following 

relations hold 

1
,

n

ijke ijkeaαα
α

η η
=

=∑           
1

n

ijke ijkeaαα
α

τ τ
=

=∑ ,     ,                               (6) 6n ≤

 

where  is the number of pairwise distinct eigenvalues n αη , ατ . Calculating the decompositions 

(6) consists of finding the eigenvalues and eigentensors ijkeaα  for concrete liquids. The 

eigenvalues of any real symmetric tensor are real. In the general case of a extremely complex 

anisotropic liquid, we have . The symmetric tensors 6n = ijkeη  and  ijkeτ  are physically realizable 
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if and only if their eigenvalues αη , ατ  are nonnegative. These invariant viscoelastic constants 

are called principal viscosities and principal relaxation times. They may or may not be all 

distinct. It should be noted that the individual components of the viscosity and relaxation time 

tensors do not satisfy invariance conditions.  

 The idempotent and “perpendicular” basis tensors  ijkeaα  satisfy the following equations 

 

1

n

ijke ijkeI aα
α=

=∑ ,                                                            (7) 

0ijke kemna aβα =    for α β≠ , 

ijmnijke kemna a aα α α= .    

 

The identity tensor ijkeI  may by expanded in terms of the eigentensors ijkeaα . Any power of 

eigentensor is the tensor itself. This property is called idempotence (Latin for self-power). There 

is the Lagrange-Sylvester formula which enables to compute eigentensors directly. If the 

principal viscosities αη are distinct, then we have 

 
6

1

ijke ijke
ijke

I
a βα

β α β

η η
η η=

−
=

−∏ ,      β α≠                                       (8) 

 

In this case the eigentensors are well determined.  

According to the spectral decomposition (6, 7), the general symmetric viscoelasticity of 

Maxwell type is described by six principal viscosity coefficients αη  and six principal relaxation 

times ατ . They represent the point spectra of the anisotropic viscosity and relaxation time. If two 

or more eigenvalues of material tensor are identical, then the spectrum is called degenerate. The 

concept of spectral decomposition extremely simplifies an analysis of anisotropic viscoelasticity. 

It facilitates the computation of sums, products, and inverses for the symmetric fourth-rank 

material tensors. To compute the inverse, we simply take the reciprocal of eigenvalues. If ijkeτ  

has no zero eigenvalues, then 

1

1

1n

ijke ijkea
α α

τ
τ

−

=
=∑  .                                                   (9) 
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 Anisotropic viscous (non-polymer) liquids can be considered as the limit case of 

viscoelastic liquids (3). Their relaxation times ατ  relative to the time scale of flow are short. 

Therefore, these relaxation processes are negligible. The stress of anisotropic viscous liquids is 

defined by the generalized Newton law 

 

ij ijkn kneσ η= .                                                         (10) 

 

This equation simply means that each stress component is linearly related to all components of 

strain rate tensor. Such behavior is typical for suspensions of anisotropic particles in viscous 

liquids [46]. An example which requires 5 viscosity coefficients is a dilute suspension of rigid 

ellipsoids. If the anisotropy has an axial symmetry, then 3 independent viscosity coefficients will 

suffice in incompressible case. Anisotropic solids can be considered as the inverse limit case. 

They are of media with extremely long relaxation times. In this case, the stress is determined by 

the generalized Hook law 

ij ijkn knGσ ε= ,                                                                (11) 

 

where  is the elasticity tensor and ijkeG ijε  is the symmetric strain tensor. Solids of this type are 

crystals and composite materials. The physically most important cases lie between these two 

extremes. 

It is useful to introduce the “principal” stresses ij
ασ  and the “principal” strain rates ijeα . 

They are defined as follows 

 

ij ijke keaα ασ σ= ,            ij ijke kee a eα α= .                                            (12) 

 

Using Eq. (7) and relations ijke ke ijI σ σ= , ijke ke ijI e e= , it is easily to obtain the following  

decompositions 

1

n

ij ij
α

α
σ σ

=
=∑ ,        

1

n

ij ije eα
α=

=∑ ,      6n ≤ .                                     (13) 

 

The “principal” stresses and strain rates are mutually perpendicular 

 

0ij ij
βασ σ = ,       0ij ije eβα =        for α β≠ .                              (14) 
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The basic law of anisotropic viscoelasticity (3) can be expressed as orthogonal decomposition 

 

1

n

ij ij
α

α
σ σ

=
=∑ ,                                                                  (15) 

ij
ij ij

D
e

Dt

α
α α

α α
σ

τ σ η+ = . 

 

These equations define the relaxation eigenmodes for anisotropic Maxwell liquids. They are 

sufficiently general to include liquids of any symmetry. For the general anisotropy, we have six 

coupled Maxwell modes. In the linear region, these relaxation modes are separated.  

It is important that the viscous and relaxation spectra αη , ατ , 6α ≤  can be 

experimentally observed. There are restrictions on the above eigen-material constants due to 

thermodynamic arguments  

 

1 0η ≥ ,  … ,  0nη ≥ ,                                                         (16)  

1 0τ ≥ ,  … , 0nτ ≥ ,      6n ≤ . 

 

These conditions have the simple form. The zero eigenvalues define the ideal anisotropic liquids 

with different soft modes. In this case, some viscoelastic eigenmodes make no contribution to the 

stress.  The ideal isotropic liquids are characterized by the trivial condition: 0αη =  and 0ατ =  

for   6α ≤ . These simplest liquids are nondissipative in all material directions. For non-viscous 

liquids and perfect gases, such behavior is typical. The liquids with soft modes are able to flow 

without resistance.     

    

III.   Special cases of viscous spectrum  
 
 
 The purpose of this section is to discuss the application of general approach to some 

simple cases. It is important to define the structure of eigentensors in the main spectral formulae 

(6) for different liquids. The simplest example is a compressible Newtonian liquid. For this 

liquid, the spectral decomposition of viscosity tensor has the simple form 

 
1

1 2ijke ijke ijkea a2η η η= + ,                                                   (17) 
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The isotropic eigentensors are expressed by 

1 1
3 ijijke ijke kea I δ δ= − ,    2 1

3 ijijke kea δ δ= , 

 

where ( je ieijke ik jkI ) / 2δ δ δ δ= +  is the symmetric unit tensor. Newtonian’s liquid is 

characterized by two principal viscosities 1η  and 2η . Using Eq. (17), we obtain the constitutive 

equation  

12
3ij ij ij nn ij nn ijp e e eσ δ η δ ζ δ⎛ ⎞

⎜ ⎟
⎝ ⎠

+ = − + ,                                      (18) 

 

where 1 / 2η η=  is the shear viscosity, 2 / 3ζ η=  is the second (bulk) viscosity, and  is the 

volumetric strain rate. Equation (18) completely describes a compressible Newtonian liquid [47]. 

This linearly viscous liquid has no directional preference. For many applications, the Stokes 

relation 

nne

0ζ =  is sufficiently accurate. The historical aspects of this relation were discussed by 

Truesdell [48]. The liquid with 0ζ =  is called the Stokes liquid. It causes no viscous resistance 

to volume flows. In some cases, the bulk viscosity may greatly exceed the shear viscosity [47]. 

For polymer liquids, the bulk viscosity is normally irrelevant. 

 The extremely important case of macroscopic anisotropy is the transverse isotropy. For 

incompressible liquids with uniaxial anisotropy, the spectral decomposition of the viscosity 

tensor has the form 
3

1
ijke ijkeaα

α
α

η η
=

=∑ .                                                      (19) 

 

This relation is more complicated to discuss than (17). The anisotropic viscosity of these 

nematics is described by the three principal viscosities αη . The nematic eigentensors are defined 

as  

1 2 3
( )( )ijke ij ke ijke ijkea I a a= − − ,    2 3 1 1( )( )

2 3 3ij ijijke ke kea n nδ δ= − − , 

3 1 ( )
2 je je ie ieijke ik ik jk jka n n n nδ δ δ δ⊥ ⊥ ⊥ ⊥= + + +  .                             (20) 

 

Here n denotes the director and  ( )( ) ( ) / 2je ie ijij ke ik jk keI / 3δ δ δ δ δ δ= + −  is the traceless unit 

tensor. The tensor  is called the structural tensor since it lay down the structural ij i jn n n=
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symmetry. The transverse Kronecker symbol  ij i jij n nδδ ⊥ = −  makes a projection on the direction 

orthogonal to the unit vector n.  The first eigentensor can be written as follows 

 

( )1 1
2 je ie ijijke ik jk kea δ δ δ δ δ δ⊥ ⊥ ⊥ ⊥ ⊥ ⊥= + − .                                      (21) 

 

For incompressible uniaxial liquids, the spectral stress representation takes the form 

 
3

1
ij ij

α

α
σ σ

=
=∑ ,     ( )ij ijeα α

ασ η= n .                                                  (22) 

 

The “principal” strain rates ijeα   are defined by  

 

1 2
ij ij ij ije e e e= − − 3 ,        2 3 1(

2 3ij ij ijke kee n e n )δ= − ,                                     (23)  

3 2ij ik kj ik kj ijks kse n e e n n e= + − . 

 

The transversely isotropic liquids with soft modes are possible. They are defined by the 

zero viscosities in some principal directions of anisotropy. We note that the zero principal 

viscosities 2η  and 3η  define the two dissipative soft modes considered by Leonov and Volkov 

[49]. In this paper, the prediction of dissipative soft modes is based on a marginal stability 

analysis. These modes cause no resistance to flow, nullifying the corresponding components of 

the dissipative part of the stress tensor. It is useful to consider the viscous spectrum with a single 

principal viscosity: 1η η= , 2 3 0η η= = . This reduction in the number of macroscopic parameters 

is justified if values of 2η  and 3η  relative to 1η  are small. For such class of incompressible 

nematic liquids, the constitutive equation has the form 

 

( ) ( )1
2ij ij ij ijik kj ik kj kn kne n e e n n n eσ η δ⎡ ⎤

⎢ ⎥⎣ ⎦
= − + + + .                             (24) 

 

This equation simplifies the general flow analysis. In the non-symmetric viscous 

nematodynamics the problem of reduction in the number of Leslie’s viscosity coefficients was 

considered by McIntosh and Leslie [50].  

Equation (22) can be reduced to the Ericksen constitutive equation [8]: 
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( )1 2 0 3 k i j kij ij ij ij n ep e I nσ δ µ µ µ+ = + + ,                                   (25) 

 

where αµ  are the viscosity constants and 0 ek keI n e=  is the simultaneous invariant of tensors  

and . The condition of positive dissipation imposes additional constraints on the viscosity 

coefficients 

ijn

ije

1
0µ ≥ ,      1 2 32( ) / 3 0µ µ µ+ + ≥ ,   1 3 / 2 0µ µ+ ≥ .                        (26) 

 

There are linear relations between the principal viscosities αη and Ericksen’s (non-principal) 

viscosity coefficients αµ : 

1 1η µ= ,    2 1 2 32( ) / 3η µ µ µ= + + ,    3 1 3 / 2η µ µ= + .                      (27) 

 
 

IV. Viscoelastic nematics 
 
 

Let us consider the simplification that is direct consequence of the uniaxial anisotropy for 

viscoelastic liquids. For incompressible Maxwell’s liquids with uniaxial anisotropy, the 

symmetric viscosity and relaxation time tensors are decomposed into three spectral components 

 
3

1
,ijke ijkeaαα

α
η η

=
=∑            

3

1
ijke ijkeaαα

α
τ τ

=
=∑                                       (28) 

 

The eigenbasis ijkeaα , 1, 2,3α =  are defined by relations (20). In the incompressible case, the 

uniaxial viscoelasticity of Maxwell type are described by three principal viscosities αη  and three 

principal relaxation times ατ . They represent spectra of viscosity and relaxation time with 

uniaxial anisotropy. These linear spectra show the relative contribution of different components 

in the total anisotropic viscosity and anisotropic relaxation time. The spectral decomposition 

leads to a representation of the dynamic stress tensor as a sum of modal contributions of 

Maxwell type 
3

1
ij ij

α

α
σ σ

=
=∑ ,                                                            (29) 

( )ij
ij ij

D
e

Dt

α
α α

α α
σ

τ σ η+ = n . 
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The “principal” stresses ij
ασ  are mutually orthogonal. They are defined by 

 

1 2
ij ij ij ij

3σ σ σ σ= − − ,        2 3 (
2 3ij ij ijke ken n 1 )σ σ= − δ ,                                     (30)  

3 2ij ie ej ie ej ijke ken n nσ γ γ σ= + − . 

 

The “principal” strain rates ijeα  are defined by the analogous formulae (23). Equations (29) define 

the relaxation eigenmodes which do not contain compressions. The uniaxial anisotropy leads to 

three coupled relaxation eigenmodes.  In the linear region, they are independent. It is important 

that the slow and fast relaxation eigenmodes can be found in different principal material 

directions. 

 The structural formulae (28) allow selecting the important special cases. They lead to the 

reduction in the number of macroscopic parameters.  The invariant viscoelastic constants αη  and  

ατ depend on the nature of liquid. In the case of the isotropic Maxwell liquid, three principal 

viscosities and relaxation times are equal: 1 2 3η η η= =  and 1 2 3τ τ τ= = . This is the case of triple 

coalescence of the eigenvalues of viscosity and relaxation time tensors. In a completely different 

context, the special uniaxial viscoelastic liquid was considered already by Volkov and 

Kulichikhin [18]. In this case we have the double coalescence of principal viscosities and 

relaxation times: 

 

1 2 3η η η≠= ,         1 2 3τ τ τ≠= .                                    (31) 

 

The viscoelastic properties of this uniaxial liquid are described by two perpendicular 

eigenmodes: 

ij ij ijσ σ σ ⊥= + ,                                                                (32) 

 

where ijσ , ijσ ⊥  are the longitudinal and transverse (with respect to the director) stresses. Each 

mode obeys 

( )ij ij ij ij
D

e
Dt

τ σ σ σ η⊥+ + = ,                                               (33) 

( )ij ij ij ij
D e
Dt

τ σ σ σ η⊥ ⊥ ⊥⊥
⊥ ⊥+ + = ,    
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were ,η η⊥  and ,τ τ⊥  are the viscosities and relaxation times of the longitudinal and transverse 

relaxation eigenmodes, respectively. Here the following notations are introduced: 

 

1 2η η η⊥= = ,      1 2τ τ τ⊥= = ,     3 ||η η= ,      3 ||τ τ= .                             (34) 

 

The longitudinal  and transverse ije ije⊥  strain rates are expressed as  

 

ij ij ije e e⊥ = − ,                                                              (35) 

2ij ie ej ie ej ijke kee n e e n n e= + − . 

 

The coherence of eigenmodes is caused by the Jaumann (nonlinear) derivative. The longitudinal 

 and transverse  components of this derivative are defined by /D Dt /D Dt⊥

 

ij ij ijD D D
Dt Dt Dt
σ σ σ⊥ = − ,                                                    (36) 

2ij ej ie ke
ie ej ijke

D D DDn n n
Dt Dt Dt Dt
σ σ σσ= + − . 

 

In general, there is a coupling of longitudinal and transverse relaxations. The linear 

viscoelasticity of these viscoelastic nematics is described by two non-interacting relaxation 

eigenmodes 

ij ij ijσ σ σ ⊥= + ,  

 

ij ij ij
d e
dt

τ σ σ η+ = ,                                                     (37) 

ij ij ij
d e
dt

τ σ σ η⊥ ⊥ ⊥
⊥ ⊥+ = . 

 

 It follows from the above considerations that the spectral approach provides a systematic 

way for obtaining the constitutive equations for anisotropic liquids with different symmetry. 
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V.  Orientation dynamics 
 
 
 The constitutive laws described above were derived for liquids with arbitrary orientation 

of anisotropy. In general, the principal directions of anisotropy in liquid may be altered by the 

flow. Therefore, the evolution equations for these basic directions must be considered. 

 To complete the theory of transversely isotropic liquid (25), Ericksen [8] postulates the 

first-order differential equation for director 

 

(v
i )s mnis imn

Dn e n n eDt λ= − ,                                              (38) 

 

where vλ  is the ‘tumbling” parameter. The director equation (38) is the simplest type of 

equations which might be used to determine the orientation of anisotropic liquids.   This director 

equation reflects the cross effect between the flow and the “internal” rotation (orientation). It is 

very reasonable for viscous liquids with transverse isotropy.  

The Ericksen orientation equation (38) can be derived in the framework of the structure-

continual theory for non-symmetric anisotropic liquids [42, 51]. This theory does not introduce 

the additional assumption of type (38). In the case of viscoelastic liquids with transverse 

isotropy, it leads to the orientation equation of the second order in time   

 

v

e
ji

ijijk jk
DFDn e

Dt Dt
λ β τ=− ,                                                   (39) 

 

e
e i

i ijk jk
DnF e
Dt

λ β= − . 

 

This equation reflects the effect of relaxation interaction [42] and coupling between orientation 

and flow. Here ij r ijτ τ δ ⊥=  and rτ  is the rotational relaxation time. The third-rank tensor ijkβ  is 

symmetric in the exchange of its last two indices. The explicit expression of  ijkβ  is 

 

( )ij jijk k ikn nβ δ δ⊥ ⊥= + .                                                       (40) 
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The director equation for nematic viscoelastic liquid of Maxwell type (39) contains the viscous  

vλ  and elastic  eλ  “tumbling” parameters. It is consistent with the thermodynamic formulation 

by Leonov and Volkov [32]. The viscoelastic orientation equation (39) has simple meaning. In 

the viscous limit, this equation reduces to the well-known Ericksen equation (38). In the elastic 

limit, it gives similar equation 

 

(e
i )s mnis imn

Dn e n n e
Dt

λ= − .                                             (41) 

 

It is the differential form of the orientation equation for nematic solids with internal rotation 

[52]. In general, the orientation dynamics of polymer (viscoelastic) nematics depends on the 

acceleration of the director. This effect can be neglected in the slow director dynamics. In this 

case, one can use the Ericksen orientation equation for viscoelastic case [18]. 

 The microstructure of liquids presented by director n is symmetric with respect the 

reflection in planes parallel and perpendicular to n. For liquids with complex internal structures, 

it is necessary to introduce the tensor representation for orientation. The types of alignment can 

be classified according to the eigenvalues of the order parameter tensor . Due to its symmetry, 

it can be spectrally decomposed as 

ijS

 

                           1 2 3ij i j i j i jS S n n S m m S l l= + + ,                                                (42) 

 

ij i j i j i jn n m m l lδ = + + , 

 

where n, m, l are orthonormal eigenvectors of S with corresponding eigenvalues ,  =1,2,3Sα α . 

The eigenvalues  Sα  are scalar order parameters. They give a measure of different types of order. 

The extensibility of microstructure is described by the first invariant 1 iiI S= . In the case of 

uniaxial orientation state two eigenvalues coincide. The most general form of uniaxial order 

parameter is 

 

( )ij ij i j i jS S n n S n nδ⊥= − + ,                                              (43) 
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where  and  are the longitudinal and transverse order parameters. For polymer media with 

completely rigid macromolecules or anisotropic particles, the order parameter tensor is defined 

by 

S S⊥

1(
3ij i j ijS S n n )δ= − ,                                                      (44) 

 

where  is the well-known scalar order parameter. In this particular case, the order 

parameter tensor is traceless [13]. 

S S S⊥= −

 

   VI.    Conclusions 
 

In this paper, the spectral concept has introduced to represent the anisotropic Maxwell 

liquids with general anisotropy. Mathematical reasons enable to establish the general structure of 

the anisotropic viscosity and the anisotropic relaxation time. It was shown that the necessary 

parameters invariantly describing the rheological properties of anisotropic viscoelastic liquids 

may be derived by the spectral decomposition of the viscosity and relaxation time tensors. This 

approach extremely simplifies an analysis of anisotropic viscoelasticity. It is sufficiently general 

to include liquids of any symmetry.  

The important particular cases of anisotropy were considered too. They lead to the 

reduction in the number of macroscopic parameters. The symmetry and thermodynamic analysis 

show that the nematic viscoelasticity of Maxwell type is characterized by the director equation of 

order greater than one.    

The spectral theory of anisotropic viscoelastic liquids leads to the modal analysis. The 

magnitude of relaxation properties depends on direction in a liquid. Therefore the relaxation 

must be defined in relation to a direction in a liquid, and the magnitude of the relaxation may be 

different in different directions.  For the anisotropic polymer liquids, the interaction of slow and 

fast relaxation processes in different material directions is fundamental. The soft viscoelastic 

eigenmodes have predicted for complex anisotropic liquids. They also significantly decrease the 

number of material parameters.  

The eigenmode coefficients are called the principal viscosities and the principal 

relaxation times. They can be introduced for liquids with any anisotropy. The eigen-material 

constants are nonnegative. In general, it is possible to represent the anisotropic viscosity by six 

principal viscosity coefficients. For the important case of incompressible liquid with uniaxial 

anisotropy, three principal viscosities will suffice. These principal viscosities and Ericksen (non-

principal) viscosities are related by linear relations.  
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We finally express that the present theory of anisotropic viscoelasticity is structure-

continual. It is possible to consider the problem from a microscopic starting point. The 

phenomenological and microscopic approaches complement each other. The first approach is 

more general. It provides the theoretical basis for fundamental (tensor) experiments. The 

structural theories are based on a specifying modeling of media. They make possible the 

calculation of macroscopic parameters. For anisotropic polymer liquids, the microscopic 

approach is growing in importance. This is due to the fact that they are tensor viscoelastic 

properties. Therefore the viscoelasticity of anisotropic polymer liquids are characterized by 

essentially higher number of macroscopic parameters as compared with isotropic polymer 

systems. The additional parameters describe the effect that the viscoelastic properties vary with 

direction within a liquid. Unfortunately, for complex media frequently the phenomenological 

approach is the only possible.  

The complication of structure leads to a prompt loss of symmetry. Spectral theory of 

anisotropic viscoelasticity opens possibility of comparing anisotropic liquids not connected with 

their symmetry at all. It offers a framework for extended and more quantitative classification of 

anisotropic liquids. The main structural formulae (6) reduces this problem to the construction of 

reasonable classifications for viscous and relaxation spectra.  
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