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We present a kinetic model for active liquid crystals and analyze the behavior of a particle subject
to slow steady simple shear. We give the stability analysis of the steady states and predict the
rheology of such systems including an activity thickening or thinning behavior of the apparent
viscosity and a negative apparent viscosity depending on the particle shape, activity, their flow
alignment behavior, and the boundary anchoring conditions of the director, which can be tested on
bacterial particles.

PACS numbers: 87.16.A-, 87.10.Ed, 83.80.Xz

I. INTRODUCTION

In the past few years, there has attracted enormous
attention [1–8] in understanding the dynamics and rheol-
ogy of active particles, such as living organisms [6, 9, 10]
and their motile constituents such as molecular motors
[11]. Such systems differ from their passive counterparts
in that particles absorb energy and generate motion and
exhibit collective behavior relying on nonlocal interac-
tions. Due to their anisotropic shape, active particles
can exhibit orientational order and form nematic phases,
characterized by a macroscopic axis of mean orientation
identified by a unit vector n and global symmetry for
n → −n, likened to ”living liquid crystals” [12] or ac-
tive liquid crystals. Properties of these self-organizing
systems are of fundamental interest to potential techno-
logical applications [13].

Conventional liquid crystals exhibit a rich dynamic be-
havior when subject to external forcing, such as shear or
applied magnetic and electric fields. This includes phase
transitions, shear banding [14], and even the turbulent
and chaotic behavior in the presence of shear [15]. Ac-
tivity imparts non-trivial physical properties and leads to
striking phenomena such as bacterial swarming [16] and
the spontaneous flow even in the absence of externally ap-
plied forces, both stationary and oscillatory [3, 4, 7, 8],
in sharp contrast to their passive counterparts. It is not
surprising that the rheology of such active liquid crystals
in response to an external shear will be very rich.

Hatwalne et al [1] first generalized continuum theory
for liquid crystals to model the rheology of active parti-
cles and pointed out that activity lowers the viscosity of
tensile particles (pushers) such as most swimming bacte-
ria, while it enhances the viscosity of contractile systems
(pullers) such as Chlamydomonas. Later, Liverpool and
Marchetti [2] presented a microscopic model of contrac-
tile particles of motor-filaments mixtures and confirmed
these results and predicted an actual divergence of the
viscosity of contractile particles at the transition. Cates
et al [17] conducted numerical studies of active nematic
films and confirmed that this result survives when the
effect of boundaries is included. Sokolov et al [18] mea-
sured the microrheology of particles of pusherlike bacte-

ria (Bacillus subtilis) and demonstrated reduction of vis-
cosity in particle of swimming bacteria. Rafäı et al [19]
have experimentally shown that active particles of puller-
type microswimmers Chlamydomonas present a dramatic
increase in effective viscosity.

Kinetic theories have long been used to study particles
of rodlike or disclike particles [20–22]. Recently, Saintil-
lan [6] used a simple kinetic theory to study the rheol-
ogy of a dilute slender particle of self-propelled particles
in a shear flow. He showed that particles of pullers ex-
hibit increased viscosity compared to passive particles,
while pusher particles exhibit a significant decrease in
viscosity due to the activity; these results are consistent
with previous predictions of Hatwalne et al [1]. However,
the model is homogeneous, hydrodynamic interactions
are not taken into account. Understanding of the com-
plex dynamics and rheology of active particles requires
exploring the full parameter space, including liquid crys-
talline elasticity and the important role of boundary con-
ditions. To better understand the dynamics and rheology
of active particles, a kinetic model incorporating liquid
crystalline elasticity is necessary.

In this work, we generalize the kinetic model presented
by Saintillan [6] to incorporate hydrodynamic interac-
tions. Our aim is to provide a systematic study the dy-
namics and rheology of active particles by carrying out
a complete exploration of the phase space formed by the
most important physical characteristics of the system:
the particle shape and activity, their flow alignment be-
havior, and the boundary conditions. Our analysis con-
firms the recent experimental results on Bacillus subtilis
[18] and Chlamydomonas [19].

II. MODEL FORMULATION

For a rigid spheroidal particle in a fluid, Jeffery [24]
first calculated the velocity of its axis of revolution m as
follows,

ṁ = Ω ·m + a[D ·m−D : mmm] (1)

where Ω = 1
2 (∇v−∇vT ) and D = 1

2 (∇v+∇vT) are the
rate-of vorticity and the rate-of-strain tensors, respec-

2010-09-01electronic-Liquid Crystal Communications

http://elc2.lci.kent.edu/docs/2010_09_01_12_26_39

http://elc2.lci.kent.edu/docs/2010_09_01_12_26_39


2

tively, and a is the shape parameter defined by a = r2−1
r2+1

where r is the ratio of the rod length or plate thickness to
the diameter, 0 < a ≤ 1 corresponds to a rodlike particle
and −1 ≤ a < 0 for a disclike particle.

In our model, we assume that all particles are of the
same rigid spheroidal configuration immersed in viscous
fluid. The evolution of a particle particle is described
by a continuity equation for the orientation distribution
function f(x,m, t) of rigid spheroidal particles with axis
of symmetry m (i.e., the particle director) on the unit
sphere S2 at position x, which satisfies the Smoluchowski
equation [20].

∂f
∂t = DrR · (Rf + 1

kT fRU)−R · [m× ṁf ], (2)

whereR = m×∂/∂m is the rotational gradient operator,
Dr is the rotational diffusion rate, k is the Boltzmann
constant, T is the temperature, U is the Marrucci-Greco
mean-field nematic potential, defined by

U = − 3
2NkT (M + L2

24 ∆M) : mm, (3)

where N specifies the strength of the nematic (excluded
volume) potential and L is a characteristic length for
particle interaction, M =

∫
||m||=1

mmfdm is the second
moment of m with respect to PDF, the deviatoric part
of M

Q = M− I/3. (4)

is called the orientation tensor which is the traceless nor-
malization of the second moment M. Q and M share an
orthonormal frame of principal axes, called the directors
in the nematic liquid literature.

Once the orientation distribution f is known by solu-
tion of equation, it can be used to evaluate the stress
tensor in the particle.

We shall see that the stress tensor is expressed in terms
of moments of PDF. Hence, instead of solving Eq. (2),
we will seek the solutions of M or the orientation tensor
Q = M− I

3 whose governing equation can be derived from
Eq. (2) by multiplying both sides by mm and integrating
over the unit sphere.

Ṁ = a[D ·M + M ·D− 2D : M4]− 6DrF (M),

F (M) = Q−N(M ·M−M : MM)]

+NL2

48 [∆M ·M + M ·∆M− 2∆M : M4

(5)

where Ṁ = dM
dt −Ω ·M+M ·Ω, dM

dt denotes the material
derivative of M, and M4 is the fourth moment of m
with respect to PDF. To close the system, we apply the
following quadratic closure approximation M4 = MM.

Under macroscopic flow, the evolution Eq. (5) couples
to the the Navier-Stokes equation through the stress ten-
sor. Following Doi and Edwards [20] we write the stress
as the sum which can be divided into a elastic, a viscous
and an active part.

τ = τe + τv + τa (6)

FIG. 1: The dipolar flow fields surrounding a extensile (left)
and a contractile (right) particle. The vertical arrows repre-
sent the director field, which is along the rod axis for rodlike
particles and perpendicular to the disk plane for disclike par-
ticles.

The first two contributions also arise with passive par-
ticles and were obtained previously as [21].

τe = 3aνkTF (M)− νkTNL2

32 [2(∆M ·M

−M ·∆M)−∇M : ∇M−∇∇M : M]
(7)

τv = 2ηsD (8)

where ν is the particle number density and ηs is the vis-
cosity of the suspending liquid.

The component of the stress resulting from the perma-
nent dipole can be expressed as [1, 5],

τa = δa(M− 1
3I) (9)

The sign of δa determines whether the dipolar flow field
generated by the swimming particle is extensile (δa < 0)
or or contractile ( δa > 0, as illustrated in Fig. 1. In
the swimmer literature, the former situation describes
”pushers”, i.e., most bacteria (e.g., E. Coli), while the
latter corresponds to ”pullers” (e.g., Chlamydomonas).

We consider shear flow between two parallel plates
located at y = ±h and moving with velocity
v = (±v0, 0, 0), respectively, in Cartesian coordinates
(x, y, z). We assume strong particle anchoring at the
plates given by the quiescent nematic equilibrium of
the orientation tensor (the deviatoric part of the struc-
ture tensor) i.e., Q = Q0 = s0(n0n0 − I

3 ) where

s0 = 1
4 [1 + 3

√
1− 8

3N ], n0 = (cos ϕ0, sinϕ0,0), and the
initial director is n0. The uniaxial director n0 is ar-
bitrary for quiescent phases; this degeneracy is broken
experimentally by mechanical or chemical plate prepa-
rations. Fig. 2 depicts the cross section of the shear
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FIG. 2: Plane shear flow geometry. Nonslip boundary con-
ditions for the velocity and boundary anchoring for the ori-
entation tensor is assumed to equal to its quiescent nematic
equilibrium value.

flow on the (x,y) plane. Variations in the direction of
flow (x) and primary vorticity direction (z), and trans-
port in the vertical (y) direction are suppressed. We
nondimensionalize the system using the length scale the
gap half-width (h), time scale t0 = 1

D0
r

and stress scale
τ0 = 3νkT , then we have four dimensionless parameters:
Re = ρh2

3νkTt20
, Er = 8h2

NL2 , δ = δa

τ0
, η = ηs

t0τ0
. The dimen-

sionless plate velocity is defined by the Deborah number,
De = v0

Drh .
We hereafter use only dimensionless scales and vari-

ables in all equations, solutions, and figures. The bound-
ary conditions for the scaled velocity v and the orienta-
tion tensor Q are

v|y=±1 = (±De, 0, 0),

Q|y=±1 = Q0

(10)

We model a uniform plate anchoring condition, either
parallel to the flow direction, called tangential anchor-
ing, or perpendicular to the shearing plates, called
homeotropic (or normal) anchoring. The majority of the
symbolic and numerical calculations presented in this pa-
per were performed using the software MAPLE 12 by
Waterloo Maple Inc. The values of parameters used in
this paper are N = 4, Er = 2000 and η = 0.1.

III. WEAK STEADY SHEAR FLOWS AND
STABILITY ANALYSIS

We seek asymptotic solutions of the governing system
of equations with the boundary conditions given by (10).
We employ a biaxial representation of the orientation ten-

sor

Q = s

(
nn− 1

3
I
)

+ β

(
n⊥n⊥ − 1

3
I
)

, (11)

where (s, β) are two order parameters measuring the bire-
fringence relative to the optical axes (also called direc-
tors) n and n⊥ confined to the shearing plane (x, y) and
parameterized by a director angle ϕ,

n = (cos ϕ, sinϕ, 0), n⊥ = (− sinϕ, cos ϕ, 0), (12)

and I is the 3×3 identity matrix. We propose the solution
ansatz

vx =
∞∑

k=1

Dekv(k)
x , (•) =

∞∑

k=0

(•)kDek, (13)

ϕ = ϕ0 +
∞∑

k=1

ϕ(k)Dek (14)

where (•) represents the order parameters s, β, respec-
tively. The solution is sensitive to the choice of boundary
conditions, so we present tangential (ϕ0 = 0) and normal
(ϕ0 = π

2 ) anchoring conditions separately. We drop the
subscript on ϕ for brevity and use vx to express v

(1)
x . The

linearized system reduces to

∂ϕ
∂t = A∂2ϕ

∂y2 + B ∂vx

∂y ,

Re∂vx

∂t = ∂τxy

∂y ,

τxy = C ∂2ϕ
∂y2 + D ∂vx

∂y + s0δϕ,

(15)

where

A =
s0 + 2
3Er

,B =
λL − 1

2
, C = − s2

0

3Er
B,D = η (16)

where λL is the Leslie tumbling parameter which is de-
fined as λL = a(2+s0)

3s0
, |λL| > 1 corresponds to flow align-

ing and |λL| < 1 corresponds to flow tumbling. We note
that high aspect ratio rods or platelets tend to align while
low aspect ratio ones tend to tumble. Fig. 3 depicts the
flow aligning and tumbling regimes for different shapes
of spheroids.

The steady state of the system (15) is pretty simple,

vx = sinh ry
sinh r ,

ϕ = −B coth r
Ar ( cosh ry

cosh r − 1)
(17)

where r =
√

s0
2(AD−BC) (λL − 1)δ. It is real (imaginary)

if (λL − 1)δ > 0 (< 0). This shows that the steady state
structure of contractile (extensile) systems with λL > 1
are the same as those of extensile (contractile) systems
with λL < 1. One can see (17) is hyperbolic (sinusoidal)
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FIG. 3: The phase diagram in the (a, s0) plane. The
flow aligning and tumbling regimes for different shapes of
spheroids.

if (λL − 1)δ > 0 (< 0) and as δ → 0, the steady state
of a passive nematics will be recovered [22]. However
at high activity, the story will be totally changed: when
(λL−1)δ > 0, the flow velocity is zero and the director an-
gle is a constant away the plates, which is akin to perme-
ation in passive cholesteric liquid crystals [23]. Fig. 4(a)
and Fig. 4(b) depicts these typical velocity and direc-
tor profiles for flow-aligning/contractile particles. When
(λL − 1)δ < 0, both the flow velocity and the director
angle are spatially oscillatory. We notice that this peri-
odic structure occurs at high activity, which perhaps can
only happen at the concentration regime close to smectic
transition. Fig. 4(c) and Fig. 4(d) depicts these typical
velocity and director profiles for flow-aligning/contractile
particles.

The transient solution for vx and ϕ (the difference be-
tween the time-dependent solution and the steady state)
obeys the same homogeneous linear partial differential
equations but satisfies a zero boundary condition. Its be-
havior dictates the stability of the steady state within the
asymptotic balance model: the steady state is asymptot-
ically stable if the transient solution vanishes as t →∞.
By the energy method, we can prove the following theo-
rem.

Theorem: The steady state is stable for tangential
anchoring if (λL − 1)δ > 0. In other cases, the steady
state is stable at low activity.

Proof We note that A > 0, D > 0, BC < 0
and AD − BC > 0. In the following proof, we drop
the superscripts on ϕ and vx. Extending (15)1 to the
boundary and accounting for the boundary condition
ϕ(−1, t) = ϕ(1, t) = 0, we have

(A∂2ϕ
∂y2 + B ∂vx

∂y )|y=±1 = 0. (18)

We introduce a nonnegative functional

I(t) =
∫ 1

−1
[γ1ϕ

2
y + γ2Rev2

x + γ3ϕ
2]dy (19)

with γ1 > 0, γ2 > 0 and γ3 > 0.

FIG. 4: The typical first order steady states. (a) and (b) de-
pict the velocity and the director profiles for the flow-aligning
contractile rodlike particles (a = 0.9) with tangentially an-
chored boundary conditions at different activity : solid,
dashed and dotted lines correspond to δ = 0.001, 0.01, 0.1.
(c) and (d) depict the velocity and the director profiles for
the flow-aligning extensile rodlike particles (a = 0.9) with
tangentially anchored boundary conditions at different ac-
tivity : solid, dashed and dotted lines correspond to δ =
−0.002,−0.02,−0.1.

If (λL − 1)δ > 0, then B and δ have same signs. We
choose γ1 = |C|, γ2 = |B| and γ3 = s0|B| δ

B and inte-
grating by parts, the time derivative of the nonnegative
functional can be estimated:

dI(t)
dt = −2

∫ 1

−1
[γ1Aϕ2

yy + (γ1B + γ2C)ϕyyvx,y

+γ2Dv2
x,y + γ3Aϕ2

y + (γ3B − s0γ2δ)ϕyvx]dy

= −2
∫ 1

−1
[|C|Aϕ2

yy + |B|Dv2
x,y + As0|B| δ

B ϕ2
y]dy < 0.

(20)

This shows that the steady solution of the system is
stable.

If (λL−1)δ < 0, then B and δ have same signs. Choos-
ing γ1 = |C|, γ2 = |B| and γ3 = 0, then

dI(t)
dt = −2

∫ 1

−1
[|C|Aϕ2

yy + |B|Dv2
x,y]dy

+2δs0|B|
∫ 1

−1
ϕyvx]dy < 0.

(21)

The inequality is based on small values of δ and the
proof is complete.

The rheological property of interest is the apparent
viscosity defined by ηapp = τxy

2F [25–27] where F =∫ 1

0
vx(y)dy is the flow rate per unit length and

τxy = Bs0δ coth r
Ar

(22)

is the shear stress, which is a constant at this order across
the shear cell. The resulting apparent viscosity is given
by

ηapp = Bs0δ cosh r
2A(cosh r−1) (23)
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FIG. 5: The apparent viscosity as functions of the activity.
(a) and (b) are for rodlike and disclike particles, respectively.

We first note that the shear viscosity of passive nematics
[22] will be recovered as expected as δ → 0. When r
is real,i.e., (λL − 1)δ > 0, ηapp increases as δ increases,
which means ηapp is thickened by δ. When r is imagi-
nary,i.e., (λL− 1)δ < 0, ηapp is not monotonic. However,
we find, if |δ| < π2(4(s0+2)+s0(λL−1)2)

6s0Er|λL−1| , ηapp is a decreasing
fuction of δ, which means ηapp is thinned by the activ-
ity δ. A negative apparent viscosity is found for flow-
aligning/extensile and tumbling/contractile rodlike par-
ticles and contractile/disclike particles at high activity.
These results confirm the previous predictions by Hat-
walne et al [1] and Saintillan [6] and observed in [18, 19].

Fig. 5 shows the apparent viscosity versus the activ-
ity for both contractile and extensile rodlike and disclike
particles. We can see that for flow-aligning/contractile
rodlike particles (a) and extensile/disclike particles (b),
the systems are always thickened by the activity; for flow-
aligning/extensile and tumbling/contractile rodlike par-
ticles (a) and contractile/disclike particles (b), the sys-
tems are thinned by the low activity but are thickened by
the high activity. The figure also shows that a negative
apparent viscosity occurs for flow-aligning/extensile and
tumbling/ contractile rodlike particles (a) and contrac-
tile/disclike particles (b).

For homotropic anchoring condition, we note that the
governing system (15) admits a symmetry: (a, δ, ϕ) →
(−a,−δ, π/2+ϕ). This property implies the steady states

with ϕ0 = π/2 can be obtained directly from the steady
states with ϕ0 = 0 by changing (a, δ) → (−a,−δ). So is
the apparent formula. We omit the detail and summarize
our main results in Fig. 6.

IV. CONCLUSION

We have studied the steady structure and rheological
behavior of a thin film of active liquid crystals. We find
the shape of a particle plays an important role in control-
ling the flow and rheological behavior, which is consistent

FIG. 6: Phase diagram in the (δ, λL) plane. Steady state
stable regions and apparent viscosity thinning/thickening re-
gions. Steady spontaneous oscillatory states arises in unstable
regions (unshaded).

with the previous predictions by [1, 5, 6] and the experi-
mental results on flow-aligning rodlike particles [18, 19].
Our results include flow-aligning/tumbling rodlike and
disclike particles , we look forward to tests of all the pre-
dictions in experiments on active systems.
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