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Photo-responsive solids such as nematic photoelastomers can undergo large deformations induced
by light absorbed into rod-like molecules which bend and disrupt liquid crystal order. Significant
variation of photo-absorption through the solid leads to non-uniform elastic deformations such as
bending of beams and plates, and pitting of layers. Such effects are also found in the presence of
inhomogeneous thermal or swelling fields in solids or gels. We analyze the small deflection limit of
these problems and show that beams made of these materials can have two elastically neutral planes,
and that plates of these materials have a typical saddle shape. We also give a scaling analysis of the
elasticity of photo-induced mounds and pits and speculate on their applications.

PACS numbers: 46.25.Hf, 46.70.De, 61.30.Gd, 78.20.Hp, 83.80.Va

Rubber formed from nematic liquid crystalline polymers has the simplest (uniaxial) orientational order associated
with the aligned rod-like elements of their component polymers. It is characterised by a director, n̂, characterizing
the direction and an order parameter, Q, giving the extent of the order. Since rubber locally has fluid-like positional
order and mobility, it is capable of large extensions. It almost flows, distortions only being resisted by the occasional
crosslink between chains. The shear modulus is correspondingly low, µ ∼ 104−106J/m3 and deformations thus occur
at constant volume (the change of which is penalised by a much higher energy scale). The Poisson ratio is ν = 1/2.

Orientational order elongates chains, and since macroscopic shape and molecular extent are directly related in
rubber, this order causes mechanical deformations. These can be by as much as 400% when a rubber is taken through
its thermal nematic-isotropic phase transition temperature where Q is either lost (on heating) or recovered (on cooling).
This spectacular effect has been proposed as a possible route to mechanical actuation and artificial muscles [1, 2]. A
photo-response of the same magnitude as thermal response can be also achieved [3] – the nematic order Q can be
reduced optically rather than thermally by using nematic rods in the network polymers that have a photochromic
(dye) centre. A photon absorbed here induces an isomerisation of the molecular structure, typically via a bend. This
leads to a reduction in nematic order as when raising temperature and thus results in the same spontaneous strains.
Indeed since mechanical contractions in nematic elastomers depends only on the degree of order, one can directly
map thermal and optical responses onto each other [3, 4]. The molecular ground state can be recovered by either a
thermal or an photo stimulated back reaction and can thus reverse the mechanical strain. Similar, non-optical effects
can also occur in other materials such as drying and swelling gels and other non-crystalline solids [5], in thermally
actuated bimetal strips [6] and in solids with non-equilibrium temperature gradients. Thus, although we will focus
on the case of nematic photo-elastomers much of our analysis is applicable to other cases as well.

In this note, we investigate the mechanical consequences of inhomogeneous illumination. For a free rubber beam
or plate of thickness w, width W and length L: linear absorption of photons incident from one side gives rise to an
exponential attenuation of the optical intensity I(x) with the distance penetrated x so that I(x) = I(0) exp{−x/d}
and the attentuation length d characterizes the density of chromophores and the coupling to the optical field. Such
elastic beams or plates will clearly bend as well as contract since there is relatively more contraction near the face
at which the light enters. We explicitly connect the intensity and penetration of radiation with the curvature and
with the position of neutral planes in the rubber, and show that the curvature can be tuned using the attentuation
length so that it goes through a maximum. For long beams L À W > w, only one component of the curvature is
important, see Fig. 1, while for plates and shells both competing curvatures can be important. However, as we will
discuss, Gaussian curvature is soon lost in favor of large developable deformations. Finally, we consider the shining
of spots of light on a film of photoelastomer anchored to a substrate giving rise to localised deformations in the form
of pits and mounds and speculate on their applications.

Consider a beam of photo-rubber shown in Fig. 1 illuminated from x < 0 by light which strikes the lower surface at
x = 0. We take the director along the z-axis of the strip, the most commonly achievable monodomain configuration.
The photo-strain (or free strain) εr

zz(x) < 0 in the photo-stationary state (where the forward photo-reaction is balanced
by the back-reactions) is that which a body would suffer were it uniformly illuminated with light of the intensity
found at x. Suppressing the tensor indices zz on εr from now on, we write the corresponding lateral photo-expansions
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FIG. 1: A photo-beam, initially straight and illuminated from below, contracts more where the light is less attenuated. The
curvature induced is R. A neutral surface is at xn.

perpendicular to the director as εr
xx = εr

yy = −εr/2 > 0 since rubber deforms incompressibly. Then the internal elastic
response, e.g. internal stress, is due to the deformations relative to this new local “natural” state of the material
in the body. In general, the actual strain minimizing the energy of the body is very different from εr(x) (except at
the neutral surfaces) since this is a nonlinear non-local problem involving finite isochoric deformations. However, in
considering small strains as we do here, we ignore the distinction between the current and reference configurations, so
that the axial elastic strain is then approximately proportional to the intensity, i.e. εr(x) = −C exp{−x/d} where C
is a constant depending on temperature. Thus εr(0) = −C, and εr(∞) → 0 for thick beams, when w À d. Classical
isotropic homogeneous beams have a single neutral plane, at xn = w/2, which is unstrained. On one side of this plane
the beam is stretched, while on the other side it is compressed. In photo-beams we take the first neutral plane to be at
a location xn where there is no mechanically induced strain relative to the natural photo-contracted state. On uniform
illumination over x = 0, the beam bends into a circular arc of radius R; the z-strain relative to the natural, irradiated
state at xn is (x−xn)/R. In general, the beam is also curved in a perpendicular direction, leading to a saddle-shaped
beam. However, for the case of long, slender beams considered previously, we can ignore this effect. This is because
the combined effects of vanishing stresses on the surfaces with normals along x and y and the smallness of the x and
y-dimensions compared with the z-dimension (L >> W > w) implies that all other stresses are dominated by σzz and
can thus be neglected to leading order. Then, the strain at x due to bending in just one direction is partially vitiated
by the natural length of an infinitesimal element at x differing from that at xn induced by the relative photo-strain
∆(x−xn) = (εr(x)− εr(xn)) = Ce−xn/d(1− e−(x−xn)/d). The effective elastic strain e is then obtained by subtracting
the relative photo-strain ∆(x − xn) from the bending strain (x − xn)/R associated with distance from the neutral
surface in the presence of curvature, and yields

e(x) =
x− xn

R
−∆(x− xn) . (1)

The local elastic stress tensor has only one non-zero component, i.e. σzz(x) = Ee(x), where E is the effective elastic
modulus of the rubber in plane stress (E = Y/(1−ν2), where Y is the Young’s modulus). Here this detail is irrelevant.
Two conditions fix the as yet unknown xn and 1/R: in the absence of any external forces and torques, the net forces
and torques at any cross-section must vanish. Therefore, for arbitrary εr(x):

W

∫ w

0

Ee(x)dx = 0 (2)

W

∫ w

0

xEe(x)dx = 0 . (3)

For weak absorption, d >> w, light is hardly attenuated by passage through the photo-beam; εr varies essentially
linearly: ∆(x− xn) ≈ C(x− xn)/d. Then conditions (2) and (3) can be matched at all planes:

(
1
R
− C

d

)
( 1
2w2 − wxn) = 0

(
1
R
− C

d

)
( 1
3w3 − 1

2w2xn) = 0 (4)

by choosing 1/R = C/d. Therefore every plane is neutral and no part of the beam is strained from its natural,
irradiated state, so that no internal stresses are set up. The mean contraction of the the beam is εr(w/2), the
shrinkage at the midpoint. Stronger optical absorption across the elastic beam implies that the variation of εr
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FIG. 2: The reduced beam curvature w/R (scaled by C) and the reduced location xn/w of the neutral surfaces as functions of
reduced penetration depth d/w. The xn/w asymptotes 1
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FIG. 3: The reduced elastic zz-strain e(x)/C against x/w through the beam, for reduced penetration depths d/w = 0.05, 0.5
and 5, the latter exaggerated by ×20 for visibility.

through the thickness is no longer linear, whereas strain due to bending remains so for simple geometric reasons.
The bent beam then has internal strains, e(x), with respect to its natural irradiated state; there are extensions in
the region (0, xn) where the photo-contraction is large, a neutral plane at xn (forward of the mid plane) after which
there is compression, and then a second neutral surface after which there is again extension. Thus the distribution of
stresses is reversed with respect to classical beams and is just as in bimetallic strips [6]. More than one neutral plane
is required for the simultaneous satisfaction of the two conditions (2) and (3). For the current, exponential case of
interest they can be explicitly integrated to yield the beam curvature and a condition for the neutral planes xn:

w

R
= 12C

d

w

[(
d

w
+

1
2

)
e−w/d − d

w
+

1
2

]
(5)

xn

w
=

1
2
− w

12d

e−xn/d − d
w (1− e−w/d)(

d
w + 1

2

)
e−w/d − d

w + 1
2

. (6)

We see that the curvature is set by the parameters C and d which characterize the photo-induced strain ∆(x) and the
attenuation length of the illumination. However, the location of the neutral planes are not affected by C at all, and
instead depend on the ratio of the attenuation length and the thickness of the beam d/w. Equation (5) shows that
the reduced curvature w/R ∼ Cw/d for large d/w, while the first correction to the infinite number of neutral planes
present when d/w = ∞ yields neutral surfaces at xn = 1

2 (1∓ 1/
√

3)w. This is corroborated by plotting the location
of the neutral planes and the curvature as a function of d/w shown in Figure 2

In Figure 3 we show the corresponding scaled axial elastic strain e(x)/C evaluated using (1) as a function of
the dimensionless transverse coordinate x/w. Since the natural length of the irradiated state as well as the natural
curvature are determined by the photo-strain C the scale of these internal strains is also set by C. For strong
absorption, d/w ¿ 1 so that photo-contraction is limited only to a thin skin near x = 0. The bulk of the beam resists
contraction, so that the skin is itself under extension with respect to its new natural length. In Fig. 3 we see that for
d/w = 0.05, the first neutral surface is at x/w ≈ 0.092 and vanishes when d/w → 0 as xn/w ∼ (d/w) ln(w/4d). In
this limit, the second neutral surface tends to xn/w = 2/3. For intermediate values of absorption, say d/w = 0.5, the
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FIG. 4: A spot of light of radius a induces the thickness H of a photo-elastomer, to increase by uzzH. A trough of depth δ
around the spot conserves volume. The healing length for distortions is l ∼ H. Displacements ur and uz and resulting shears
are sketched.

main extensional region is not so tightly confined to the vicinity of x = 0. For even weaker absorption, say d/w = 5,
the elastic strain is distributed more nearly symmetrically but is very small since the natural, photo-strain varies
almost linearly in the interval x = 0 to x = 1 and is thus nearly accommodated by simple bending leading to a strain
(x− xn)/R. When the absorption is so weak as to nearly vanish, the curvature also vanishes since ultimately one has
uniform contraction. Thus we expect that the curvature reaches a maximum for some intermediate value of d/w; (5)
shows that d/w = 0.372 leads to a maximum curvature w/R ∼ 0.84C.

When the length and width of the beam are comparable L ∼ W , we have a plate and illumination can lead to
a doubly curved shell: zz contractions (along L) must be accompanied by expansions in the two other directions
to conserve volume. Since the yy expansion at the lower face is greater than that at the upper face, a curvature
1/Ryy in the y − x plane of opposite sign to that in fig. 1, will initially result leading to a saddle-shaped shell with a
negative Gaussian curvature. Unlike in the case of a beam, for a plate when W ∼ L we cannot neglect the in-plane
stresses even in the limit of small deflections. The two conditions (2,3) are now replaced by four; two of which impose
the condition of vanishing force resultants in the z and y directions, and the other two which impose the condition
of vanishing moment resultants in the same two directions. Eliminating between these conditions shows that the
neutral surfaces associated with the zz and yy stresses are coincident and that the y curvature is opposite in sign
from the z curvature as expected for a saddle-shape. Furthermore, 1/Ryy scales exactly as the 1/Rzz, but with the
change C → − 1

2C as expected when volume conservation governs transverse expansions. For large deflections, the
shapes are no longer saddle-like since bending a shell perpendicularly to one of its curvatures causes much stretch –
an energetically much more expensive deformation than bending. Instead, the plates deform almost inextensionally,
i.e. without any stretching almost everywhere except in the vicinity of certain boundary layers, whose discussion we
defer to the future.

Finally, we consider shining light in spots of radius a onto the surface of a photo-elastomer of thickness H glued
onto a rigid substrate. Then, any deformation of the material leads to shear strains generated by the anchoring. For
simplicity, we assume that (a) the director does not rotate in this elastic analysis - either in response to the light or to
shears, (b) the penetration depth d À H, so that the photo-strain is uniform in z, and (c) the illumination causes a
localized uniaxial elongational free strain along z with respect to the initial length by an amount εr and corresponding
contractions of −εr/2 in the x and y directions.

We give a scaling analysis of the elastic response. If the actual zz-strain response with respect to the unilluminated
state is uzz, then with respect to the new natural length, the elastic strain e ∼ u − εr, where we have suppressed
indices as usual. Thus the stored elastic energy in the mound is ∼ E(u − εr)2a2H. The material removed from the
trough is equal in volume to that of the mound, that is alδ ∼ a2uH, where the healing distance l ∼ H (the scale over
which effects decay when spreading through the bulk of a film) so that δ ∼ au. Volume conservation requires that the
radial displacement of material points ur ∼ −ru/2 so that at the level of scaling ur ∼ −(a+H)u. Since the bottom of
the layer is glued to the substrate this leads to shear strains over a depth ∼ H of magnitude ur/H ∼ u(a+H)/H, and
hence an energy ∼ Eu2(a + H)4/H. Likewise in the rubber in the lip separating the trough and the mound there is a
shear strain resulting from the variation of a z displacement uz with r, that is uzr ∼ ua/H over a volume, laH ∼ aH2,
yielding an energy ∼ Eu2a3. The material directly under the trough suffers a compressive strain ∼ δ/H ∼ ua/H,
again with energy ∼ Eu2a3. Lastly, there are compressive hoop strains uθθ = ur/r ∼ −u/2, the 1

2 simply reminding
us that these arise directly from volume conservation. The associated energy is ∼ Eu2a2H. The total energy and
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where the function c(a/h) reflects the changing geometrical constraints as the spot changes size relative to the
thickness of the rubber layer. For wide spots, the mound height above the background is small, that is uH ∼ εrH3/a2

as a/H À 1. Medium spots, a/H ≤ 1 have a height ∼ Hεr/n with n depending on the scaling and is number
between 1 and 10. For small spots the height is again small, uH ∼ εra2/H as a/H ¿ 1. This analysis shows how
thickness and spot size can be varied in order to tailor surface topography. Nematic elastomers that suffer uniaxial
contraction and have the director normal to the surface will produce pits analogous to the mounds above. Such
nematic photoelastomers with the director in plane (the most common geometry) will produce mounds of elliptical
character. The scaling analysis should not be changed by this. We conclude with a brief discussion of possible
applications and future directions. An obvious application is to actuation via optically induced bending [7, 8]. Our
demonstration that photo-bend displays a maximum, suggests how to choose materials and geometry to optimize an
actuator. A recent interesting application is to an optical “swimmer”, in effect a self-propelled, optically powered
pump [8]. In polydomain rubbers [7], the curl direction is set purely by the polarization of the light, showing that
the effect is purely optical and not the result of the effect of the heat generated by photon absorption. Recovery in
these cases was via a back reaction stimulated by light of another colour and can lead to rapid responses with rise
times depending on the power, and decay times of about 10 ms [8]. Our analysis of pits and bumps in anchored and
confined photo-elastomers suggests applications to writable structures in microfluidics as valves, gates and reactor
voids, tunable contact printing, switchable reflector elements in projective displays etc. Our analysis has been limited
to small deflection theory. Many important effects such as the effect of large strains (which are important in rubber),
large amplitudes of beam bending, rates of photon absorption depending on the extent of photo-response, shifts of
the photo-stationary state by internal stresses, dynamics, and the application of external forces and torques remain
to be studied.
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