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Abstract

We present a systematic derivation of the extended Jefferys’ orbit for rigid ellipsoidal and
V-shaped polymer molecules in linear incompressible viscous flows using a Lagrange multiplier’s
method based on a constraining force argument [5]. It reproduces the well-known Jefferys’ orbit
for rotating ellipsoids [12]. The method is simple and applicable to any rigid body immersed
in a linear flow field so long as a discrete set of representative points on the rigid body can
be identified that possess the same rotational degrees of freedom as the rigid body itself. The
kinematics of a single V-shaped rigid polymer driven by a linear flow field are discussed, where
steady states exist along with time-periodic states in limited varieties. Finally, we show how
the kinematics of the rigid V-shaped polymer can be used in the derivation a kinetic theory for
the solution of rigid biaxial liquid crystal polymers.

Keywords: Kinematics, kinetic theory, linear flows, ellipsoids, biaxial liquid crystal polymers,
V-shaped polymer.

1 Introduction

The configurational space kinetic theory for rigid polymers or solid suspensions in another fluid
is built upon two basic ingredients, the interaction potential to each point in the configurational
phase space and the kinematics of the point under imposed flow fields, where each pint in the
configurational space represents the full configuration of a polymer or the suspension particle [1,
5]. When the host fluid is viscous and incompressible, the kinematics of the phase point in the
configurational space is often derived with respect to an imposed linear flow field which is an exact
solution of the Stokes equation. Jefferys studied the kinematics of an ellipsoid immersed in a viscous
fluid (Stokes fluid) and derived the well-known Jefferys’ orbit for the rotating ellipsoid about its own
center of mass [12]. This was later used in many theory development and applications [2, 13, 11, 16].
Eshelby [9] and recently Wetzel and Tucker [17] examined the kinematics of an ellipsoidal inclusion
in elastic and viscous media. They derived the explicit formula for the kinematics of the three major
axes of an ellipsoidal inclusion using the Eshelby tensor. More recently, a number of theories for
polymer blends have been developed based on deformable ellipsoidal droplets, whose constitutive
equation also relies on the kinematics of the deformable ellipsoids in imposed linear flow fields [7, 6].

With the surging interest in modeling dynamics of suspensions and/or rigid polymer molecules
of biaxial symmetry using kinetic theories, there is the need to provide an on-the-fly method to
derive the kinematics of the representative axes of a rotating rigid molecule or particle in imposed
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Figure 1: The portrait of an ellipsoid with semiaxes (c, a, b).

linear flows while conveniently neglecting the hydrodynamic interaction. The Lagrange multiplier
method discussed in the book by Doi and Edwards outlines an efficient way for devising such a
method [5, 8, 10]. The idea is to identify a set of representative points on the rigid body so that the
kinematics of the positional vectors of the representative points can fully describe the kinematics
of the rigid body while the rigid constraints are taken into account.

In the following, we will detail the approach using two examples: we present the method by
deriving the kinematics of a rigid ellipsoid and a biaxial V-shaped rigid liquid crystal polymer,
respectively. We will then discuss the kinematics of a V-shaped rigid molecule in plane shear and
elongational flows. Finally, we develop a kinetic theory for solutions of V-shaped liquid crystal
polymers using the derived kinematics for V-shaped rigid polymers.

2 Revisit of the kinematics of an ellipsoid in linear flow fields

We consider the rotational motion of an ellipsoidal suspension in linear incompressible viscous
flows about its center of mass. The ellipsoid is described by three major axes (m,n,k) and three
corresponding semi-axes (c, b, a) with respect to its center of mass. Since the rotation is about the
center of mass, we set up the Cartesian coordinate with its origin coincident with the center of
mass in the derivation. We identify three representative points on the ellipsoid, shown in Figure 1,

x1 = cm, x2 = bn, x3 = ak. (1)

We assign an equal amount of mass to each point. By ignoring the hydrodynamic interaction, the
rotation of the ellipsoid can be fully described by the rotation of the three points subject to the six
rigid body constraints:

C1 = ‖x1‖2 − c2, C2 = ‖x2‖2 − b2, C3 = ‖x3‖2 − a2,

C4 = x1 · x2 = 0, C5 = x1 · x3, C6 = x2 · x3.
(2)

We now calculate the velocity at the three discrete points xi, i = 1, 2, 3, respectively, subject to the
constraints (2). The velocity at xi is affected by two factors. One is the affine motion of the point,
free of the constraints, due to the imposed linear flow K ·xi, where K = ∇v is the velocity gradient
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tensor of the linear flow field v, a constant trace-free matrix; and the other is the constraining force
exerted by the constraints (2), given by

6∑

p=1

λp
∂Cp

∂xi
, (3)

where λp, p = 1, · · · , 6 are Lagrange multipliers to be determined later and Cp, p = 1, · · · , 6 are
the constraints given in (2). We denote Hij the mobility matrix for free point xi moving in the
linear flow driven by an external force Fj at xj . The combination of the velocities due to the affine
motion and the constraining force due to the rigid constraints yields the total velocity at xi

ẋi = K · xi −
3∑

j=1

Hij ·
∑

p

λp
∂Cp

∂xj
. (4)

Since the representative points are constrained by (2), we differentiate the constraints to obtain

3∑

i=1

∂Cp

∂xi
· ẋi = 0, p = 1, · · · , 6. (5)

Solving these equations, we obtain the Lagrange multiplier λp:

λp = (h−1)pq

6∑

i=1

∂Cq

∂xi
·K · xi, p = 1, · · · , 6, (6)

where

h = (
3∑

ij=1

∂Cp

∂xi
·Hij · ∂Cq

∂xj
). (7)

As the viscous fluids considered here are isotropic, we assume Hij = 1
ζ Iδij , where ζ is the friction

coefficient and I is the identity matrix.
We denote ra = a

c , rb = b
c as the two aspect ratios of the ellipsoid. Substituting (1) into (4), we

arrive at the generalized Jeffrey’s orbit for ellipsoids [12]

ṁ = K ·m−mmm : K− r2
b

1+r2
b
n(n ·K ·m + m ·K · n)− r2

a
1+r2

a
k(k ·K ·m + m ·K · k),

ṅ = K · n− nnn : K− 1
1+r2

b
m(n ·K ·m + m ·K · n)− r2

a

r2
a+r2

b
k(k ·K · n + n ·K · k),

k̇ = K · k− kkk : K− 1
1+r2

a
m(k ·K ·m + m ·K · k)− r2

b

r2
a+r2

b
n(k ·K · n + n ·K · k).

(8)

The angular velocity of the rotational motion can be identified as

ω = [ r2
b

r2
a+r2

b
k ·K · n− r2

a

r2
a+r2

b
n ·K · k]m + [ r2

a
1+r2

a
m ·K · k−

1
1+r2

a
k ·K ·m]n + [ 1

1+r2
b
n ·K ·m− r2

b

1+r2
b
m ·K · n]k.

(9)
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Figure 2: V-shaped rigid body or molecule.

With this,

ṁ = ω ×m, ṅ = ω × n, k̇ = ω × k. (10)

In the case of a spheroid, where ra = rb = r, we use the fact that nn + kk = I −mm. Then,
eq. (8.1) reduces to

ṁ = K ·m−mmm : K− r2

1+r2 n(n ·K ·m + m ·K · n)− r2

1+r2 k(k ·K ·m + m ·K · k)

= K ·m−mmm : K− 2r2

1+r2 (D ·m−mmm : K)

= W ·m + a[D ·m−mmm : D],

(11)

where W = K−KT

2 and D = K+KT

2 are the vorticity and rate of strain tensor, respectively, a = 1−r2

1+r2

is a geometric parameter. This is the well-known Jefferys’ orbit describing the kinematics of the
axis of symmetry of a spheroid [12, 16].

This method can be extended in principle to any rigid bodies so long as (i). the hydrodynamic
interaction is negligible, (ii). we can identify a set of representative points on the body that share
the same rotational degree of freedom as the rigid body itself when constrained by the rigid body,
and (iii). mass is evenly distributed on the rigid body. We next derive the Jefferys’ orbit for a
V-shaped (bent-core, banana-like, or boomerang) polymer molecule.

3 Kinematics of V-shaped polymer molecules in linear flow fields

We coarse-grain the bent-core, banana or boomerang polymer molecule by a rigid V-shaped
rigid body consisting of three beads and two rigid connectors shown in Figure 1. We denote the
orientation of the two rigid connectors by am and bn, where ‖m‖ = ‖n‖ = 1. We let xi, i = 1, 2, 3
be the positional vectors of the bead locations which form the skeleton of the V-shaped molecule
along with the connectors.

The two connecting vectors are defined by

am = x1 − x2, bn = x3 − x2. (12)
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We assume that the two beads at x1,3 have the identical mass while the third one at x2 may have
different mass. We also set the origin of the coordinate system at the center of the mass, which
requires

x1 + cx2 + x3 = 0, (13)

where c is the ratio of the mass of the bead at x2 to that at x1,3. If all three beads share the same
amount of mass, c = 1. We next use the Lagrange multiplier’s method to derive the time evolution
equation of the positional vectors relative to the center of mass under an imposed linear flow field
v = K ·x, where x is the positional vector with the origin set at the center of mass of the V-shaped
rigid body.

The V-shaped rigid body is subject to the following constraints:

‖x1 − x2‖ = a, ‖x3 − x2‖ = b,x1 + cx2 + x3 = 0, ‖x3 − x1‖ = a2 + b2 − 2ab cos θ, (14)

where cos θ = m · n and θ is the angle between m and n. These can be rewritten into totally 6
independent scalar constraints given by

C1 : e1 · (x1 + cx2 + x3) = 0,
C2 : e2 · (x1 + cx2 + x3) = 0,
C3 : e3 · (x1 + cx2 + x3) = 0,

C4 : ‖x1 − x2‖2 − a2 = 0,

C5 : ‖x3 − x2‖2 − b2 = 0,

C6 : ‖x1 − x3‖2 − [a2 + b2 − 2ab cos θ] = 0.

(15)

We adopt a mobility matrix Hij with friction coefficient ζi, given by

Hij =
1
ζi

Iδij , (16)

where ζ1 = ζ3. We set ζ = ζ2/ζ1 and without loss of generality ζ1 = ζ3 = 1 in the following
We now calculate the velocity at the three discrete points xi, i = 1, 2, 3, respectively, subject to

the constraints in (15). The steps are identical to the ones alluded to in the previous section. For
V-shaped molecules, however, the matrix

h =
(

P3×3 u
uT h3×3

)
, (17)

where

P3×3 =




2 + c2

ζ 0 0
0 2 + c2

ζ 0
0 0 2 + c2

ζ


 ,u = (1− c/ζ)




2ae1 ·m 2be1 · n 0
2ae2 ·m 2be2 · n 0
2ae3 ·m 2be3 · n 0


 ,

h3×3 = a2




4(1 + 1/ζ) 4/ζr cos θ 4− 4r cos θ
4/ζr cos θ 4r2(1 + 1/ζ) 4r2 − 4r cos θ

4− 4r cos θ 4r2 − 4r cos θ 8(1 + r2 − 2r cos θ)


 ,

(18)
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r = b/a and ei, i = 1, 2, 3 are the three base vectors in the fixed Cartesian Coordinate. Three of
the Lagrange multipliers can be solved explicitly:

λ4 = − 1
4d

[(− cos θc2 − 2 cos θc− 6− 2c2 − ζ − cos θζ − 2 cos θ − 6c)(2ζ + c2)m ·K ·m
− (−2 cos θ + cos θζ − 2 cos θc + ζ + c2 + 2 + 2c)(2ζ + c2)(n ·K ·m + m ·K · n)

+ (2c− cos θζ + 6 cos θ + cos θc2 + 6 cos θc + 2− ζ)(2ζ + c2)n ·K · n],

λ5 =
1
4d

[(− cos θc2 − 6 cos θc− 2− 6 cos θ + ζ + cos θζ − 2c)(2ζ + c2)m ·K ·m
+ (−2 cos θ + cos θζ − 2 cos θc + ζ + c2 + 2 + 2c)(2ζ + c2)(n ·K ·m + m ·K · n)

+ (2 cos θ + 6c + 2c2 + 2 cos θc + cos θc2 + cos θζ + 6 + ζ)(2ζ + c2)n ·K · n],

λ6 = − 1
4(cos θ − 1)(cos θ + 1)(c + 2)2

[(2c + cos θc2 + 2 + 2 cos θ + cos θζ + 2 cos θc− ζ)m ·K ·m
+ (−2− c2 − 2c− 2 cos θc− 2 cos θ − ζ + cos θζ)(n ·K ·m + m ·K · n)

+ (2c + cos θc2 + 2 + 2 cos θ + cos θζ + 2 cos θc− ζ)n ·K · n],

(19)

where d = (c + 2)2(cos θ + 1)(−2 cos θ + cos θζ − 2 cos θc + ζ + c2 + 2 + 2c). The other three λ1,2,3

are given by the solutions of the linear system:

λ1e1 + λ2e2 + λ3e3 = −2(1− cζ)
2 + c2ζ

(λ4am + λ5an). (20)

The kinematic equations for the positional vectors are given by:

ẋ1 = K · x1 − [λ1e1 + λ2e2 + λ3e3 + λ4(2am) + λ62(am− bn)] (21)
ẋ2 = K · x2 − 1/ζ[(λ1e1 + λ2e2 + λ3e3)c + λ4(−2am) + λ5(−2bn)] (22)
ẋ3 = K · x3 − [λ1e1 + λ2e2 + λ3e3 + λ5(2bn) + λ6(−2(am− bn))]. (23)

We next limit to the special case: r = b
a = 1 and define

r1 = x2 − x1 + x3

2
, r2 =

x1 − x3

2
. (24)

We normalize the two vectors r1, r2 to unit vectors n1,n2, respectively,

‖ni‖ = 1, i = 1, 2. (25)

We call n1 the arrow and n2 the bow vector, respectively. The kinematic equations for the unit
vectors are given by

ṅ1 = K · n1 + ξ1n1 + ξ2n2 tan θ/2,

ṅ2 = K · n2 + ξ3n1 cot θ/2 + ξ4n2,
(26)

where

ξ1 = −K : n1n1

ξ2 =
sin θ(c2 + 4c + 4)

2(2 cos θc + 2 cos θ − cos θζ − c2 − 2c− 2− ζ)
K : (n1n2 + n2n1)

ξ3 =
sin θ(2ζ + c2)

2(2 cos θc + 2 cos θ − cos θζ − c2 − 2c− 2− ζ)
K : (n1n2 + n2n1)

ξ4 = −K : n2n2

(27)
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Simplifying, we arrive at

ṅ1 = K · n1 −K : n1n1n1 + (1−cos θ)(c2+4c+4)
2(2 cos θc+2 cos θ−cos θζ−c2−2c−2−ζ)

K : (n1n2 + n2n1)n2

= K · n1 −K : n1n1n1 + sn2,

ṅ2 = K · n2 −K : n2n2n2 + (1+cos θ)(2ζ+c2)
2(2 cos θc+2 cos θ−cos θζ−c2−2c−2−ζ)

K : (n1n2 + n2n1)n1

= K · n2 −K : n2n2n2 − (k0 + s)n1,

(28)

where

s = (1−cos θ)(c2+4c+4)
2(2 cos θc+2 cos θ−cos θζ−c2−2c−2−ζ)

K : (n1n2 + n2n1), k0 = K : (n1n2 + n2n1). (29)

It follows from (28) that the angular velocity of the rotating rigid body is given by

ω = 1
2 [

∑3
i=1 ni ×K · ni + (k0 + 2s)n3 + n3 × ((K · n1)× n2 + n1 × (K · n2)−K · n3)] (30)

We remark that when the mass of the three beads are identical (c = 1) and the friction coefficients
are identical (ζ = 1), the angular velocity reduces to

ω == (K : n2n3)n1 − (K : n1n3)n2 +
1

1 + 2 sin2 θ
2

[cos2
θ

2
K : n1n2 − 3 sin2 θ

2
K : n2n1]n3. (31)

With this, the kinematic equations can be rewritten into

ṅi = ω × ni, i = 1, 2, 3, (32)

where n3 = n1 × n2.

4 Kinematics of a V-shaped rigid polymer molecule in shear and
elongational flows

The rotational motion of an ellipsoid has been studied in [12]. Here, we focus on the driven
dynamics of a single V-shaped polymer molecule in two special cases of linear flows: plane shear
and elongation, respectively.

4.1 Kinematics in plane shear flows

We examine the kinematics of the V-shaped rigid body under the imposed shear flow

v = (µy, 0, 0). (33)

In the case of ellipsoid, it was shown that the Jefferys’ orbit of a sheared ellipsoid is a time-periodic
orbit in [12]. For the V-shaped rigid body suspended in the viscous fluid under simple shear,
however, the kinematics are more diversified. In addition to the periodic orbits, there could be
steady states. This is witnessed by the fact that

ω = 0 (34)
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has some constant solutions. In fact, if we set

n1 =




cosα sinβ
sinα sinβ

cosβ


n2 =




cosα cosβ cos γ − sinα sin γ
sinα cosβ cos γ + cos α sin γ

− sinβ cos γ


 , (35)

we find the following family of steady states:

• n1 = (sinβ,0, cosβ),n2 = (± cosβ,0,∓ sinβ),n1 = (− sinβ,0, cosβ),n2 = (∓ cosβ,0,∓ sinβ),
0 ≤ β ≤ π.

In this steady states, the V-shaped rigid body lay on the (x,z) plane with the bow vector in an
arbitrary orientation.

The eigenvalues of the coefficient matrix of the linearized system for all steady states are 0, and
their corresponding eigenvectors are v = (x1, x2, x3), where x1

x3
= − 3(cos θ−1)

2 cos β(2 cos θ−1) , x2 is arbitrary.
Thus, the steady states are neutrally stable.

Besides, the neutrally stable steady states, there are other sustainable time-dependent solutions.
The time evolution of the pair of vectors n1,2 are governed by the generalized Jeffery’s orbit. If
n1 and n2 are on the shearing plane, the (x,y) plane, the angular velocity is fixed in the vorticity
direction:

ω =
1
2
(k0 + 2s + K : n2n1 −K : n1n2)n3. (36)

We parametrize the unit vectors by an angle φ:

n1 = (cosφ, sinφ, 0),n2 = (− sinφ, cosφ, 0),n3 = (0,0,1). (37)

The angular velocity is given by

ω = −1
2
µ(1 + cos 2φ

2 cos θ − 1
cos θ − 2

)n3. (38)

Clearly, there is no steady state solutions when θ 6= 0, π, indicating the existence of the tumbling
solution for the V-shaped rigid body. The angular velocity equation yields

φ̇ = −1
2
µ(1 + cos 2φ

2 cos θ − 1
cos θ − 2

). (39)

The solution of φ is given by
∫ φ

φ0

dφ′

2− cos θ − cos 2φ′(2 cos θ − 1)
=

µt

2(cos θ − 2)
(40)

where φ(0) = φ0. The period of the rotation can be calculated as

T = |2(cos θ − 2)
µ

∫ 2π

0

dφ

2− cos θ − cos 2φ(2 cos θ − 1)
| = 4π

µ

2− cos θ√
3 sin θ

. (41)

It follows from this formula that

• the period decreases as µ increases, indicating the speed-up effect by shear;

• when θ increases in (0, π
2 ), the period decreases; whereas the period increases as θ increases

in (π
2 , π).

So the period is the smallest when the V-shaped forms an angle of degree π/2 and largest as it
folds or stretches into a rod. In summary, the steady states are in the (x, z) plane while the time
periodic solution can exist in the (x,y) plane.
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4.2 Elongational flows

We next consider the imposed elongational flow field with elongational rate ν

v = (−ν

2
x,−ν

2
y, νz). (42)

Since the elongational flow is symmetric about the z-axis, the orientation of n2 is arbitrary. There
is no time-periodic solutions in elongational flows since it is a much strong flow than the simple
shear. The steady states are given by three families of solutions in terms of the Euler angle below.

• β = 0 and α and γ are arbitrary, n1 = (0, 0, 1),n2 = (cosα, sinα, 0). The arrow n1 is fixed in
the direction of the flow while the bow is arbitrary in the plane transverse to the flow.

• n1 = (cosα, sinα, 0),n2 = (0, 0,−1). The bow is in the flow direction while the arrow points
to the transverse direction to the flow.

• n3 = (0, 0, 1),n1 = (cosα, sinα, 0),n2 = (− sinα, cosα, 0). The arrow and the bow vector are
both in the (x,y) plane transverse to the flow direction.

The linear stability analysis shows that the first and the second family of steady states are stable
while the third one is not.

With the Jefferys’ orbit available now for the V-shaped rigid body immersed in viscous solvent,
we next develop a kinetic theory for solutions of homogeneous biaxial liquid crystal polymers of
V-shaped molecules generalizing the work of Doi-Hess [5] and demonstrating how the kinematics
of the V-shaped rigid polymer can be used in the derivation.

5 Kinetic theory for V-shaped biaxial liquid crystal polymers (BLCPs)

We denote the angular momentum operator by

L = ix× ∂

∂x
, (43)

where x is the positional vector in Cartesian space R3. We denote the complex conjugate of L
by L∗, the two base vectors of the polymer molecule by m = n1,n = n2, and the third one by
k = m × n. We assume the two arm of the V-shaped BLCP molecule have the equal length, i.e.,
a = b. In the rotating molecular frame m,n,k, the base vectors are parametrized in the Cartesian
coordinate by three Euler angles (α, β, γ):

m = (cosα sinβ, sinαsinβ, cosβ)T ,

n = (cos α cosβ cos γ − sinα sin γ, sinα cosβ cos γ + cosα sin γ,− sinβ cos γ)T ,

k = (− cosα cosβ sin γ − sinα cos γ,− sinα cosβ sin γ + cosα cos γ, sinβ sin γ)T .

(44)

Let f(m,n,k, t) be the probability density function for the orientation of V-shaped rigid
molecules. We adopt the generalized coordinate method to derive the transport equation for f
[5]. The Smoluchowski equation for the time evolution of the pdf f is given by [5, 3, 4, 18]

d

dt
f = L∗ · (DrLµf)− L∗ · (gf), (45)
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where µ is the normalized chemical potential of the polymer system,

µ = ln f +
1

kBT
V, (46)

V is the mean-field potential including the intermolecular potential and the external potential,
In the molecular frame (m,n,k).

L = mLm + nLn + kLk,

Lm = i ∂
∂γ ,

Ln = i(cos γ cotβ ∂
∂γ + sin γ ∂

∂β − cos γ
sin β

∂
∂α),

Lk = i(sin γ cotβ ∂
∂γ + cos γ ∂

∂β + sin γ
sin β

∂
∂α),

g = i[mK : nk− nK : mk+

k
1+2 sin2 θ

2

(cos2 θ
2K : mn− 3 sin2 θ

2K : nm)],

Dr = diag( D0
r

2a2 sin2 θ
2

, 3D0
r

2a2 cos2 θ
2

, 3D0
r

2a2(3−2 cos2 θ
2
)
).

(47)

We note that the angular velocity of the molecule ω = −ig. The intermolecular potential V =
V (f,m,n, t) includes the dipole-dipole, dipole-quadrupole, quadrupole-quadrupole interaction among
each segment on the V-shaped molecule [14]. D0

r is a characteristic rotary diffusivity [15].
The extra elastic stress tensor for the BLCP system is calculated by an extended virtual work

principle [5, 16, 15]. Here, we only present the result. Details are referred to [16, 15]. We denote
the flow vector (g) by

g = K : αmm + K : αnn + K : αkk. (48)

The elastic stress tensor can then be expressed in terms of the angular momentum (L) as follows:

ταβ
e = νkBT 〈α∗αβ

m Lmµ + α∗αβ
n Lnµ + α∗αβ

k Lkµ〉

= νkBT [−〈L∗ · ~ααβ〉+ 〈α∗αβ
m LmU + α∗αβ

n LnU + α∗αβ
k LkU〉],

(49)

where ν is the number density of the LCP molecule, kB is the Boltzmann constant, T is the absolute
temperature, ~ααβ = (ααβ

m , ααβ
n , ααβ

k ) is a third order tensor and L∗ · ~ααβ =
∑3

i=1 Liα
αβ
i . There is

also a elastic external force

Fe = −νkBT 〈∇µ〉. (50)

The viscous stress for V-shaped BLCPs, τv, follows from a model calculation involving energy
dissipation (W ), given by [5]:

W = K : τv. (51)

In this calculation, we model the V-shaped molecule as a geometric object consisting of two joined
arms, each of which is made up of a finite number of small beads of spherical shapes [5]. The
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hydrodynamic interaction due to the presence of multiple beads is neglected. Under the velocity
gradient K = ∇v, each arm rotates about the center of mass of the V-shaped object with the
angular velocity ω. The velocity of the nth bead (in the kth arm, k=1,2) relative to the fluid is:

Vk
n = ω × uk −K · uk, (52)

where uk is the distance vector of the nth-bead in the kth rod measured from the center-of-mass of
the molecule, which is given by:

xC.M =
a

2
cos(

θ

2
)m. (53)

Hence,

u1,2 = (s− a
2 ) cos( θ

2)m + (±s) sin( θ
2)n,

V1
n = r1[(K : mk)k−K ·m] + r2[(K : nk)k−K · n] + K : α3v(r1n− r2m),

V2
n = r1[(K : mk)k−K ·m] + r3[(K : nk)k−K · n] + K : α3v(r1n− r3m),

(54)

where s is the arclength measured from the origin along either arm whose range is [0, a], α3v = −iα3

is a real second order tensor. We denote r1 = (s− a
2 ) cos( θ

2), r2,3 = (±s) sin( θ
2). It follows that

u1 = (r1, r2, 0),u2 = (r1, r3, 0). (55)

(K : αk) is the kth component of the flow-vector g. We assume that the frictional force acting on
each segment is Fk

n = ζVk
n, where ζ is the friction coefficient. Then, the work done by the frictional

force per unit time and unit volume is:

W = νkBT
∑

n,k〈Fk
n ·Vk

n〉 = νkBTζ[
∫ a
0 〈V1 ·V1〉ds +

∫ b
0 〈V2 ·V2〉ds]. (56)

The details of the calculation is given in [15]. Using eq.(51,56), we obtain the viscous stress as
follows

τv = νkBTζ a3

6 ∇v : [cos2( θ
2)〈mmmm〉+ 4 sin2( θ

2)〈nnnn〉+ sin2( θ
2
) cos2( θ

2
)

(1+2 sin2( θ
2
))2

(4 + 5 sin2( θ
2))

〈(mn + nm)(mn + nm)〉].
(57)

The total stress for the biaxial liquid crystal polymer system is then given by

τ = −pI + τe + τv. (58)

The usual incompressibility condition for incompressible fluids and the momentum balance equation
supply the remaining equations for the theory

∇ · v = 0.

ρdv
dt = ∇ · τ + Fe + Fo,

(59)

where ρ is the density of the biaxial liquid crystal polymer fluid and Fo is the external force exerted
on the fluid per unit volume other than the elastic force.
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